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Abstract 
 

In this paper we present a methodology to deal with trends in DSGE models. 
This type of models have consequences for long run growth as well as for 
cyclical dynamics and it would be desirable to deal with both aspects in an 
unified frame-work. Two different problems need to be addressed. The first ones 
concerns a rigorous local approximation of a balanced growth model. This is 
solved by the usual practice of stationarizing the model first, and using trends 
directly in(log- )linear form. 

The second issues deals with the estimation in the level of the data. When the 
data are not stationary, it is necessary to use a diffuse Kalman filter as the one 
proposed for example by Koopman and Durbin (2003).In this paper, we propose 
a modification of this filter in order to better deal with cointegrated variables. 

As an illustration, we develop a medium size New Keynesian model with 
consumption habits, adjustment costs and nominal rigidities in the goods and 
labor markets. This model is estimated on Japanese data. 

In order to take into account the zero nominal interest rate bound to which 
the Japanese monetary policy was confronted in the recent period, we 
experiment with modeling the log of the interest rate rather than the interest rate 
itself. This workaround is far from perfect, but it permits the use of local 
approximation without having a model generating negative values for the 
nominal interest rate. 
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1 Introduction

Depending on the questions that they ask, economists focus more on determinants of long run

growth or, on the contrary, on t he mechanisms of short run dynamics. However, it is obvious that

a given model has usually implications both for fluctuations at business cycle frequencies and for

the long run. This is even truer in Dynamic Stochastic General Equilibrium models (DSGE) that

have explicit microeconomic foundations. Long term growth is generally induced by technical

progress and demographic change.

Traditionally, the issue has been addressed in two ways, either the business cycle model is written

without reference to the growth factors, but, then, the data to which the model is confronted must

be detrended by mean of a statistical method. Or, the original data are used and the model con-

tains a growth mechanism. It can be argued that the first approach is less satisfactory, because the

growth component that is removed by the statistical detrending procedure isn’t consistent with

the growth mechanism implicitly implied by the theoretical model. However, estimating DSGE

models with growth trends raises additional methodological problems that must be carefully ad-

dressed.

The first problem concerns the solution method used to solve the DSGE models. While it isn’t

the only option, in practice, the solution involves a local approximation of the original, struc-

tural, model. Obviously, it wouldn’t be very reasonable to compute the local approximation of

∗CEPREMAP, 142 rue Chevaleret, 75013 Paris. e-mail: michel [DOT] juillard [AT] ens [DOT] fr
†We thank Antoine Devulder for many discussions and having shared his modeling ideas.
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a model with growing variables around a given point: the quality of the local approximation

would strongly deteriorate as one gets further from the point around which the local approxima-

tion is computed! The solution to this problem is to compute the local approximation around a

stationarized version of the model. Such a version exists if the model is characterized by balanced

growth.

In order to proceed with estimation, it is necessary to express the bridge between stationarized

and original variables. It is then possible to estimate the model against original variables. Again,

a choice opens: one can choose to estimates in growth rates or in levels of the original variables.

The latter provides additional information on the co-integrating relationships of the model.

Finally, when growth dynamics take the form of non-stationary processes and one wants to esti-

mate against data in levels of the variables, an additional issue arises with the initialization of the

Kalman filter that is used to compute the likelihood of the model. A frequent recommendation is

to use a diffuse filter.

As an illustration of this procedure, we present then a medium size New Keynesian model, in-

spired from ?1. There is an explicit mechanism for exogenous growth of labor embodied techno-

logical change.

2 Dealing with trends in DSGE models

In a first sub–section, we discuss the process through which one can stationarized a balanced

growth model and take–up in section 2 problems related to the use of the diffuse Kalman filter.

2.1 A stationary transformation

As already mentioned, there exists a specific problem with nonlinear growth models. Current

estimation methods require a local (log–)linear approximation of the original model. In the case

of stationary models, it is reasonable to take the local approximation around the deterministic

steady state of the model. The deterministic steady state is the point of the state space where the

model would converge in the absence of shocks. This method is legitimate as long as the shocks

1A similar type of model has also been estimated on Japanese data in ?
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aren’t too large.

However, by definition, there is no steady state point for a growth model. Furthermore, if one was

to take a local approximation of a growth model around any particular point, it is obvious that the

quality of this local approximation would deteriorate as the economy moves further away of this

particular point. This would be true as time goes by, but also as one would move further towards

the past.

A similar preoccupation is in order in a framework wider than economic growth proper, when

some variables of the model follow a non-stationary process. Even without drift, a unit root

process can move very far from a given point. For example, most models with an inflation target

rule will induce a stochastic trend in the price level, even if the inflation target is zero. When

the inflation target is greater than zero, the price level will be characterized with both a pure

stochastic trend and a deterministic one.

Intuitively, if a model possess a reference growth path, one would want to compute a local ap-

proximation around this path. This is what is done when one stationarize a model characterized

by a balanced growth path. A model is characterized by balanced growth when, in the absence of

shocks, each variable converges towards a path with a constant rate of growth. Of course, some

variables can have a constant long run path with a null growth rate.

In this class of models, it is by definition always possible to define the relative distance to the

trend:

Ŷt =
Yt
Ȳt

Ȳt =(1 + gY t) Ȳt−1

where Yt is the original variable, Ȳt, the value of the trend at the same period, Ŷt, the relative

distance to the trend or stationarized variable, and gY t is the growth rate of the trend.

It is then possible to rewrite the model in term of the stationarized variables. When replacing the

original variables by stationarized ones, the following rules must be followed, depending on the

relative time period at which the variable appears in the model:
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1. variables appearing at the current period, Yt, are replaced by their stationarized counterpart,

Ŷt.

2. variables appearing with a lag, Yt−k, are replaced by their stationarized counterpart, di-

vided by their growth factor elevated to the power of the number of lags, bYt
(1+gY )k

.

3. variables appearing with a lead, Yt+k, are replaced by their stationarized counterpart, mul-

tiplied by their growth factor elevated to the power of the number of leads, (1 + gY )k Ŷt.

Another feature of balanced growth models that is useful in this context is the following. If one

replaces the original variables with its expression as the product of the stationarized variable and

its trend, Yt = ŶtȲt, it is then possible to eliminate the trend variables. In practice, it is a useful

property that lets one verify that the model has indeed a balanced growth path.

When one estimates a model with non-stationary variables, a further problem arises with the

initialization of the Kalman filter that is used in order to compute the likelihood of the model.

2.2 The diffuse filter

The estimation strategy is as follows. The first order approximated solution of the stationarized

model described above provides an equation of the form

ŷt = Aŷst−1 +But

where ŷt = yt− ȳ is the vector of variables of the model in deviation to the steady state, yst are the

variables present in the state vector (all the variables appearing with a lag in the model), ut are

the shocks, and A and B are the coefficients of this reduced form.

Because only some of the variables present in the model are observed, we are dealing here with a

statistical model of unobserved components. Its likelihood is computed by the Kalman filter and

the model must be put in state space form.

The transition equation describes the dynamics of the state variables:

ŷ
(1)
t = A(1)ŷ

(1)
t−1 +B(1)ut
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where A(1) and B(1) are the appropriate sub-matrices of A and B, respectively. y(1)
t is the union

of the state variables yst , including all necessary lags, and y?t , the observed variables. Note that

matrix A(1) can have eigenvalues equal to one.

The measurement equation is written

y?t = ȳ +Mŷ
(1)
t + xt + εt

where M is the selection matrix that recovers ŷ?t out of ŷ(1)
t , xt is a deterministic component2 and

εt is a vector of measurement errors.

In addition, we have, the two following covariance matrices, for the structural shocks and for the

measurement errors:

E (utu′t) = Q

E (εtε′t) = H

In what follows, it is simpler and computationally more efficient to remove directly the deter-

ministic elements from the observations before applying the filter. The simplified measurement

equation is then

ỹ?t = Mŷ
(1)
t + εt

with ỹ?t = y?t − ȳ − xt.

When the stochastic trends in the model contain a deterministic component, it is necessary to

separate the pure random walk process that is represented in the transition equation from its

deterministic component that is treated as an exogenous element in the measurement equation.

The initialization of the Kalman filter remains an important issue. For stationary models, the

state variables are initialized at their unconditional mean and the variance of the one–step ahead

forecast errors in first period are set equal to the unconditional variance of the variables. This

option isn’t available in non-stationary models as the unconditional variance is infinite.

Durbin and Koopman (2004) propose a diffuse filter to handle this situation. The basic idea is
2Currently, Dynare only accommodates linear trends.
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to compute the limit of the Kalman filter when initial variance tends toward infinity. Essentially,

they analyze the filter when P0, the initial variance of the one–step ahead forecast error is the

following limit:

P0 = lim
k→∞

kI

This approach is however problematic in the case of co-integration relationships, because the

above limit for the variance matrix doesn’t take into account the relations between co-integrated

variables.

For this reason, we propose to apply the diffuse filter to a transformed state space representation

where the independent stochastic trends appear directly. This transformed system is obtained by

a Schur decomposition of the transition matrix.

In the transition equation

ŷ
(1)
t = A(1)ŷ

(1)
t−1 +B(1)ut

we propose to perform a reordered real Schur decomposition on transition matrix A(1):

A(1) = W

 T11 T12

0 T22

W ′

where T11 and T22 and quasi upper–triangular matrices and W is an orthogonal matrix. The

reordering is such that the absolute value of the eigenvalues of T11 are all equal to 1 while the

eigenvalues of T22 are all smaller than 1 in modulus. When there are co-integrating relationships

between the state variables, there are obviously less unit roots in the system than the number of

non-stationary variables in the model. The dimension of T11 reflects this fact.

It is then natural to rewrite the transition equation in transformed variables as

at = Tat−1 +Rut

where at = W ′ŷ
(1)
t and R = W ′B. The measurement equation becomes

ỹ?t = Zat + εt
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with Z = MW . Note that in this formulation of the state space representation, only the state vari-

ables are transformed, structural shocks and measurement errors stay the same as in the original

formulation.

The diffuse initialization of the filter is now as follows. The initial values for the state variables

are a0 = 0. This is the unconditional mean of the stationary elements in at and has no effects for

the non-stationary ones.

Following Durbin and Koopman, we set

P0 = P∞
0 + P ?0

=

 I 0

0 0

+

 0 0

0 Σã


where I is an identity matrix of the same dimensions as T11. It corresponds to the diffuse prior on

the initial values of the stochastic trends. Σã is the covariance matrix of the stationary part of at.

Σã is the covariance matrix of ãt with dynamics

ãt = T22ãt−1 + R̃ηt

or

Σã = T22ΣãT ′
22 + R̃QR̃′

where R̃ is the conforming sub-matrix of R. As T22 is already quasi upper–triangular, it is only

necessary to use part of the usual algorithm for the Lyapunov equation.

While P∞
t is different from zero, the filter (and smoother) is in a diffuse step. When t > d, where

d is the maximum integration order, the procedure falls back on standard recursions.

At t = 0

E
(
a1|0

)
= P1|0 = P∞

1|0 + P ?1|0
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Then,

F∞
t = ZP∞

t|t−1Z
′

F ?t = ZP ?t Z
′ +H

K∞
t = TP∞

t|t−1Z
′ (F∞

t )−1

K?
t = T

(
P ?t|t−1Z

′ (F∞
t )−1 − P∞

t|t−1Z
′ (F∞

t )−1
F ?t (F∞

t )−1
)

vt = ỹ?t − Zat|t−1

at+1|t = Tat|t−1 +K∞
t vt

P∞
t+1|t = TP∞

t|t−1

(
T ′ − Z ′K∞

t
′)

P ?t+1|t = −TP∞
t|t−1Z

′K?
t
′?
t|t−1

(
T ′ − Z ′K∞

t
′)+RQR′

where at|t−1 = Et−1at.

Finally, the log–likelihood is given by

−nT
2

ln 2π − 1
2

T∑
t=1

ln |Ft| −
1
2

T∑
t=1

v′tF
−1
t vt

3 A DSGE model

What follows describes a DSGE model whose structure is close to ?.

3.1 Households

The economy is populated with a continuum of households h ∈ [0, 1]. Each household values

consumption of a composite good. We write Ct(h) the demande of this good by household h in

period t. A household offers as well labor hours. We write Lt(h) the labor supply of household h

in period t. Welfare is defined as:

Wt(h) = ut(h) + βE[Wt+1(h)]

ut(h) =

[
Ct(h) − ηCt−1

]1−σc
1 − σc

exp
{
εL,t

σc − 1
1 + σl

Lt(h)1+σl
} (3.1)
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where εL,t is a shock to labor supply. log εL,t is an AR exogenous shock process with mean log L̃

(this parameter gives us an extra degree of freedom for adjusting the stationary level of hours).

We choose this form for the utility function in order to build a model compatible with balanced

growth.

We assume that utility obtained by household h in period t depends not only on its own con-

sumption but as well on aggregate consumption in previous period, Ct−1 =
∫ 1

0
Ct−1(h)dh. This

is a mechanism of external habits.

The budget constraint of household h, in period t, in real terms, is the following:

Ct(h) + pI,tIt(h) =

{
Bt−1(h)
Pt

− Bt(h)
PtεB,tRt

+ (1 − τW,t)
Wm
t

Pt
Lt(h)

+ rkt zt(h)Kt−1(h) +
D1,t(h) + D2,t(h)

Pt

}
+Tt

(3.2)

where Pt is the aggregate price index; Rt = 1 + it, corresponds to the rate of interest plus one,

Bt(h) the nominal value of bonds detained by household h at the end of period t, εBt is the risk

premium requested by households in order to detain the bond; log εBt is an AR process with zero

mean; It(h) is investment of h during period t; log pI,t is an exogenous shock on the relative price

of investment and follows an AR process with zero mean;Wm
t is the hourly wage rate received by

household h in period t; Tt represents net transfers received by the household during the period;

D1,t(h) and D2,t(h) are the dividends received from firms and from the unions that differentiate

household labor supply.

On the resource side, return on physical capital, rt, is given by

rkt = zt(h)Kt−1(h)

where the stock of physical capital at date t is

Kt(h) = (1 − δ(zt(h)))Kt−1(h) + εI,t

(
1 − S

(
It(h)
It−1(h)

))
It(h) (3.3)
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zt(h) ∈ [0, 1] is the rate of utilization of physical capital with steady value z? ; the depreciation

rate, δ, is a function of the rate of utilization that verifies δ(0) = 0, δ(1) = 1, δ(z)′ > 0 for all

z ∈ [0, 1] and we write δ(z?) = δ? ; εI,t is a random shock to the efficiency of capital accumulation

log εI,t is an AR process with zero mean; function S describes adjustment costs on investment, we

assume S(1 + g) = 0, where g is the rate of growth of investment on the balanced growth path,

furthermore S(1 + g)′ = 0 and S ′′ > 0.

Each household h chooses its consumption, labor supply, bond holdings, investment, and capital

utilization rate so as to maximize its inter-temporal utility (3.1) under the budget constraint (3.2)

and the the law of evolution of physical captital (3.3), taking as given evolution of prices and

exogenous variables.

The first order optimality conditions are given by:

(
Ct(h) − ηCt−1

)−σc exp
{
εL,t

σc − 1
1 + σl

Lt(h)1+σl
}

= λt(h) (3.4)

where λt(h) is the Lagrange multiplier associated to the real budget constraint,

λt(h) = βεB,tRtEt
[
λt+1(h)
πt+1

]
(3.5)

where πt+1 ≡ Pt+1/Pt is the inflation rate between period t and t+ 1,

ut(h) (σc − 1) εL,tLt(h)σl = −λt(h)
Wm
t

Pt
. (3.6)

Writing µt(h) the Lagrange multiplier associated to the capital accumulation function one gets:

pI,tλt(h) = µt(h)εI,t

[
1 − S

(
It(h)
It−1(h)

)
− It(h)
It−1(h)

S ′
(

It(h)
It−1(h)

)]
+βEt

[
µt+1(h)εI,t+1

(
It+1(h)
It(h)

)2

S ′
(
It+1(h)
It(h)

)] (3.7)

µt(h)δ
′ (zt(h)) = λt(h)rkt (3.8)
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and at last:

µt(h) = βEt
[
µt+1(h)

(
1 − δ(zt+1(h))

)
+ λt+1(h)rkt+1zt+1(h)

]
(3.9)

Given the symmetrical nature of the solution for the household’s problem, we get the following

aggregated relationships:

(Ct − ηCt−1)
−σc exp

{
εL,t

σc − 1
1 + σl

L1+σl
t

}
= λt (3.10)

λt = βεB,tRtEt
[
λt+1

πt+1

]
(3.11)

utεL,t (σc − 1)Lσlt = −λt
Wm
t

Pt
(3.12)

pI,t
εI,t

= Qt

[
1 − S

(
It
It−1

)
− It
It−1

S ′
(

It
It−1

)]
+βEt

[
λt+1

λt
Qt+1

εI,t+1

εI,t

(
It+1

It

)2

S ′
(
It+1

It

)]
(3.13)

Qtδ
′ (zt) = rkt (3.14)

Qt = βEt
[
λt+1

λt

(
Qt+1

(
1 − δ(zt+1)

)
+ rkt+1zt+1

)]
(3.15)

Here, Qt ≡ µt/λt is Tobin’s Q.

3.2 Production

3.2.1 Final good producers

Producers of final good, Yt, operate in a perfectly competitive environment, assembling a contin-

uum of diversified intermediary goods written Yt(ι) with ι ∈ [0, 1]. They have access to a unique
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constant return aggregation technology as in ?, implicitly defined by

∫ 1

0

Gf

(
Yt(ι)
Yt

)
dι = 1 (3.16)

where Gf is a strictly increasing concave function such that Gf (1) = 1. We follow ? or ? and adopt

the following functional form for this aggregation function:

Gf (x) =
θf (1 + ψf )

(1 + ψf )(θf (1 + ψf ) − 1)

[(
1 + ψf

)
x− ψf

] (1+ψf )θf−1
(1+ψf )θf −

[
θf (1 + ψf )

(1 + ψf )(θf (1 + ψf ) − 1)
− 1
]

(3.17)

Parameter ψf characterize the curvature of the demand function.

The producer of final good chooses the quantity of intermediary goods ι so as to maximize her

real profit:

Yt −
∫ 1

0

Pt(ι)
Pt

Yt(ι)dι

under the technological constraints (3.16) and (3.17). As the aggregation function is homogeneous

of degree one, it is equivalent to minize cost per unit with respect to the relative demand of

intermediary good ι under the technological constraint.

The first order condition of optimality determines the demand for intermediary good ι:

Yt(ι)
Yt

=
1

1 + ψf

[(
Pt(ι)/Pt

Θt

)−(1+ψf )θf

+ ψf

]
(3.18)

where Θt is the Lagrange multiplier associated with the technological constraints (3.16) and (3.17)

for the representative firm. Substituting (3.18) in the technological constraints, one gets the fol-

lowing expression for the Lagrange multiplier:

Θt =

(∫ 1

0

(
Pt(ι)
Pt

)1−θf (1+ψf )

dι

) 1
1−θf (1+ψf )

(3.19)
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The price elasticity of demand is given by:

ε
(
Ỹt(ι)

)
= −

G ′
(
Ỹt(ι)

)
Ỹt(ι)G ′′

(
Ỹt(ι)

)
and, with particular aggregation function adpopted in this study,

ε
(
Ỹt(ι)

)
= θf

[
1 + ψf −

ψf

Ỹt(ι)

]

When ψf is equal to zero, we get back to the more usual case of the CES aggregator of Dixit-

Stiglitz ? with a price elasticity of demand equal to θf . More generally, one remarks that demand

is more sensitive to price when the level of demand is important if and only if parameter ψf is

positive. We expect therefore to obtain a negative value for this parameter.

Finally, as the final good sector is perfectly competitive, profit for the representative firm must be

zero and we derive the aggregate price index:

Pt =
ψf

1 + ψf

∫ 1

0

Pt(ι)dι+
1

1 + ψf

(∫ 1

0

Pt(ι)1−(1+ψf )θfdι
) 1

1−(1+ψf )θf

(3.20)

3.2.2 Intermediary goods producers

A continuum of firms ι ∈ [0, 1] in monolistic competition produce intermediary goods for the

producers of the final good. These firms have all access to the same Cobb–Douglas technology in

to transform physical capital and labor in differentiated intermediary goods:

Yt(ι) =
(
Kd
t (ι)

)α (
AtL

d
t (ι)

)1−α
(3.21)

where Kd
t (ι) and Ldt (ι) are demands of intermediary good firm ι for physical capital, and labor,

respectively; At is technical progress, neutral in Harrod sense. The latter term is further decom-
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posed in a trend component AT,t and a cyclical on AC,t. We have then,

∆logAT,t ∼ AR(1) stationary with mean log(1 + g) (3.22a)

logAC,t ∼ AR(1) stationary with zero mean. (3.22b)

Each intermediary firm ι ∈ [0, 1] buys freely its production factors on competitive markets taking

their price as given. The firm ι ∈ [0, 1] decides upon the mix of physical capital (Kd
t (ι)) and labor

(Ldt (ι)) so as to minimize its cost, rktKd
t (ι)+wtLdt (ι), under the technological constraint (3.21). The

firm optimal behavior on the factor markets is summarized by the following factor prices frontier:

wtL
d
t (ι)

rktK
d
t (ι)

=
1 − α

α
(3.23)

where wt ≡ Wt/Pt is the real wage. The ratio of capital to labor is invariant across firms. Using

the factor prices frontier, we rewrite the total cost of firm ι as a function of the stock of capital:

CTt(ι) =
rktK

d
t (ι)
α

On the other hand, as the returns of scale is constant, we know that the total cost can also be

written as

CTt(ι) = mct(ι)Yt(ι)

where mct(ι) is the real marginal cost. We derive then the following expression for the marginal

cost of firm ι:

mct(ι) = Aα−1
t

(
rkt
α

)α(
wt

1 − α

)1−α

≡ mct (3.24)

Again, marginal cost doesn’t depend on the size of the firm and is constant across firms.
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The nominal profit of a firm that offers price P at date t id given by:

Πt(P) =
(
εy,t

P
Pt

−mct

)( P
Pt

)−(1+ψf )θf
(∫ 1

0

(
Pt(ι)
Pt

)1−(1+ψf )θf

df

) (1+ψf )θf
1−(1+ψf )θf

+ ψf

 PtYt
1 + ψf

where log εy,t, an zero mean AR stationary process, is a shock to the sales of the firm.

Firm ι has market power but can’t decide of the its optimal price in each period. Following a

Calvo scheme, at each date, the firm receives a signal telling it whether it can revise its price Pt(ι)

in an optimal manner or not. There is a probability ξp that the firm can’t revise its price in a given

period. In such a case, the firm follows the following rule:

Pt(ι) = [π̄t]
γp

[
Pt−1

Pt−2

]1−γp
Pt−1(ι) = ΓtPt−1(ι) (3.25)

where π̄t si the inflation target of the monetary authorities. More generally, we write

Γt+j,t =

(
j−1∏
h=0

π̄t+h

)γp (j−1∏
h=0

πt+h

)1−γp

= Γt+1Γt+2 . . .Γt+j

the growth factor of the price of a firm that doesn’t receive a favorable signal during j successive

periods(for j = 0 we have Γt,t = 1; for j = 1, we have Γt+1,t = Γt+1). When the firm ι receives a

positive signal (with probability 1 − ξp), it chooses price Pt(ι) that maximizes its profit.

Let Ṽt be the value of a firm that receives a positive signal in period t and Vt(Pt−1(ι)) the value

of a firm that receives a negative signal. As a firm that receives a negative signal follows simply

the ad hoc pricing rule (3.25), its value at time t depends only on Pt−1(ι). For a firm that receives

a positive signal, its value at period t is

Ṽt = max
P

{
Πt

(
P
)

+ βEt
[
Λt+1

Λt

(
(1 − ξp)Ṽt+1 + ξpVt+1

(
P
))]}

(3.26)

where Λt is the Lagrange multiplier of the budget constraint of the representative household and

PtΛt = λt. Let P ? be the optimal price choosen by the firm that can re–optimize.
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The value of a firm that can’t re–optimize is

Vt
(
Pt−1(ι)

)
= Πt

(
ΓtPt−1(ι)

)
+ βEt

[
Λt+1

Λt

(
(1 − ξp)Ṽt+1 + ξpVt+1

(
ΓtPt−1(ι)

))]
(3.27)

The first order condition and the envelope theorem give

Π′
t

(
P ?
)

+ βξpEt
[
Λt+1

Λt
V ′
t+1

(
P ?
)]

= 0 (3.28a)

V ′
t

(
Pt−1(ι)

)
Γt

= Π′
t

(
ΓtPt−1(ι)

)
+ βξpEt

[
Λt+1

Λt
V ′
t+1

(
ΓtPt−1(ι)

)]
(3.28b)

with the derivative of profit at P :

Π′
t

(
P
)

= εy,t
1 − θf (1 + ψf )

1 + ψf

(
P
Pt

)−(1+ψf )θf

Θ
(1+ψf )θf
t Yt

+θf

(
P
Pt

)−(1+ψf )θf−1

Θ
(1+ψf )θf
t mctYt +

ψf
1 + ψf

εy,tYt

(3.29)

Let’s write temporarily, in order to simplify notations, P , the price inherited from the past. One

can rewrite, one period ahead

V ′
t+1

(
P
)

= Γt+1,tΠ′
t+1

(
Γt+1,tP

)
+ βξpΓt+1,tEt+1

[
Λt+2

Λt+1
V ′
t+2

(
Γt+1,tP

)]

Iterating toward the future and applying conditional expectation at time t, one gets

Et
[
V ′
t+1

(
P
)]

= Et

 ∞∑
j=0

(βξp)
jΓt+1+j,t

Λt+1+j

Λt+1
Π′
t+1+j

(
Γt+1+j,tP

)
By substitution ( P = P ?) inf the first order condition, one gets the following condition for the

price choosen by the firm that gets a positive signal:

Et

 ∞∑
j=0

(βξp)
jΓt+j,t

Λt+j
Λt

Π′
t+j

(
Γt+j,tP ?t

) = 0 (3.30)

One can get a more explicit expression for the price that satisfies equation (3.30). Substituting in
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this equation the expression of marginal profit (3.29) and dividing by P ?t
−(1+ψf )θf one gets:

P ?t
Pt

=
θf (1 + ψf )

θf (1 + ψf ) − 1
Z1,t

Z2,t
+

ψf
θf (1 + ψf ) − 1

(
P ?t
Pt

)1+(1+ψf )θf Z3,t

Z2,t
(3.31)

with

Z1,t = Et
∞∑
i=0

(βξp)
jλt+j

(
Γt+j
Pt+j/Pt

)−(1+ψf )θf

Θ
(1+ψf )θf
t+j mct+jYt+j (3.32a)

Z2,t = Et
∞∑
i=0

(βξp)
jλt+jεy,t+j

(
Γt+j
Pt+j/Pt

)1−(1+ψf )θf

Θ
(1+ψf )θf
t+j Yt+j (3.32b)

Z3,t = Et
∞∑
i=0

(βξp)
jλt+jεy,t+j

Γt+j
Pt+j/Pt

Yt+j (3.32c)

writing Pt+j/Pt, the inflation factor between t and t+ j, can be written equivalently Πj
i=1πt+i, and

we can represent variables Z1,t, Z2,t and Z3,t in recursive form:

Z1,t = λ̂tmctΘ
(1+ψf )θf
t Ŷt + βξpEt

( πt+1

π
γp
t−1π̄

1−γp
t

)(1+ψf )θf

Z1,t+1

 (3.33a)

Z2,t = λ̂tεy,tΘ
(1+ψf )θf
t Ŷt + βξpEt

( πt+1

π
γp
t−1π̄

1−γp
t

)(1+ψf )θf−1

Z2,t+1

 (3.33b)

Z3,t = λ̂tεy,tŶt + βξpEt

[(
π
γp
t−1π̄

1−γp
t

πt+1

)
Z3,t+1

]
(3.33c)

Writing ϑf,t ≡
∫ 1

0
Pt(ι)
Pt

dι can be written in recursive form:

ϑf,t = (1 − ξp)
P ?t
Pt

+ ξp
π̄

1−γp
t π

γp
t−1

πt
ϑf,t−1 (3.34)

we can finally write the equation (3.20) equaivalently as:

ψfϑf,t

1 + ψf
+

Θt

1 + ψf
= 1 (3.35)
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In the end, inflation dynamics are characterized by equations (3.35), (3.34), (3.31), (3.33a), (3.33b),

(3.33c).

3.3 Labor

Homogeneous labor Lt =
∫ 1

0
Lt(h)dh provided by the households is differentiated by a contin-

uum of unions, ς ∈ [0, 1]. We have then Lt =
∫ 1

0
lt(ς)dς . Unions sell differentiated labor, lt(ς),

to an employment agency that aggregate different types of labor to offer it as input to the firms

of the intermediary good sector. Unions have monopolistic power and the employment agency

operates in a perfectly competitive manner.

3.3.1 Employment agency

It aggregates lagor lt(ς) provided by unions with an aggregation function as in ?, defined implic-

itly by ∫ 1

0

Gs

(
lt(ς)
Lt

)
dς = 1 (3.36)

where Gs is a strictly increasing concave function such that Gs(1) = 1. We use the following

specification:

Gs(x) =
θs(1 + ψs)

(1 + ψs)(θs(1 + ψs) − 1)

[(
1 + ψs

)
x− ψs

] (1+ψs)θs−1
(1+ψs)θs −

[
θs(1 + ψs)

(1 + ψs)(θs(1 + ψs) − 1)
− 1
]

(3.37)

This function is a generalization of the Dixit–Stiglitz aggregator ? that is a particular case when

ψs = 0. The employment agency chooses the relative quantity of labor of type ς such as mini-

mizing the cost of production by unit of homogenous labor, Wt(ς)
Wt

lt(ς)
Lt , under the technological

constraints (3.36) and (3.37). The first order condition associated to the optimization program of

the employment agency determines its demand of differentiated labor3 ς :

lt(ς)
Lt

=
1

1 + ψs

[(
Wt(ς)/Wt

Υt

)−(1+ψs)θs

+ ψs

]
(3.38)

3In order to save in notations, we don’t make a difference between the demand of the employment agency and the
supply by the unions.
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where Υt is the Lagrance multiplier associated with the technological constraints (3.36) and (3.37.

Substituting (3.38) in the technological constraint, one gets the following expression for the La-

grange multiplier

Υt =

(∫ 1

0

(
Wt(ς)
Wt

)1−θs(1+ψs)

dς

) 1
1−θs(1+ψs)

(3.39)

As the employment agency behaves in a competitive manner, its profit is zero and we get the

aggregate wage as

Wt =
ψs

1 + ψs

∫ 1

0

Wt(ς)dς +
1

1 + ψs

(∫ 1

0

Wt(ς)1−(1+ψs)θsdς
) 1

1−(1+ψs)θs

(3.40)

3.3.2 Unions

Unions supply differentiated labor services from the homogeneous labor supply from the house-

holds. Unions have market power because of this differentiation of labor services. We write the

profit of a union offering wage Wt(ς) and lt(ς) units of labor:

St (Wt(ς))) = (εl,tWt(ς) −Wm
t ) lt(ς)

where log εl,t, is an exogenous shock on union’s gains. It is an AR(1) process with zero mean.

For a given demand, when εl,t = 1, the profit of the union is given by the difference between the

wage asked to the employment agency and the wage paid to the household. By substitution in

the demand function of the employment agency (3.38):

St (Wt(ς))) = (εl,tWt(ς) −Wm
t )

1
1 + ψs

[(
Wt(ς)/Wt

Υt

)−(1+ψs)θs

+ ψs

]
Lt (3.41)

Each union is subject to a Calvo lottery. In each period, a union can adjust the wage Wt(ς) in an

optimal manner with probability ξw. In this case, the union chooses wage W ?
t that maximizes its

profit knowing that in the future it may not have the opportunity to readjust the wage for some

periods. When the lottery draw is negative for the union (with probability 1−ξw), it adjusts wages
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according to the following ad hoc rule:

Wt(ς) =
AT,t

AT,t−1
π̄
γw
t−1π

1−γw
t−1 Wt−1(ς) (3.42)

We write Ωt = (AT,t/AT,t−1) π̄
γw
t−1π

1−γw
t−1 ≡ Ωt,t−1 the growth factor of nominal wage asked by the

union ς at date t when this one doesn’t have the opportunity of revising it in an optimal manner.

In this case, the union changes the wage by indexing it on (i) a convex mix of the inflation target

of the monetary authority and of past inflation and (ii) the efficiency growth in the intermediary

goods sector. We write

Ωt+j,t =
AT,t+j

AT,t

(
j−1∏
h=0

π̄t+h

)γw (j−1∏
h=0

πt+h

)1−γw

= Ωt+1Ωt+2 . . .Ωt+j

the growth factor of the wage of a a union that gets negative signals during the the next j periods

(for j = 0, we have Ωt,t = 1, for j = 1, we have Ωt+1,t = Ωt+1).

Let Ũt be the value of a union that receives a positive signal at date t and Ut(Wt−1(ς)) the value

of a union that receives the negative signal. In the latter case, the union follows simply the ad

hoc rule (3.42), this explains why its value at date t depends upon Wt−1(ς). On the opposite, the

optimization program of a union that receives a positive signal is purely turn towards the future.

As unions have the same expectations about the future, they all choose the same optimal wage

(W ?
t ). More formally, the value at date t of a union that receives a positive signal is

Ũt = max
W

{
St

(
W
)

+ βEt
[
Λt+1

Λt

(
(1 − ξw)Ũt+1 + ξwUt+1

(
W
))]}

(3.43)

where Λt is the Lagrange multiplier associated to the nominal budget constraint of the represen-

tative household.

The value of a union that receives a negative signal is

Ut
(
Wt−1(ς)

)
= St

(
ΓtWt−1(ς)

)
+ βEt

[
Λt+1

Λt

(
(1 − ξw)Ũt+1 + ξwUt+1

(
ΓtWt−1(ς)

))]
(3.44)
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The first order condition and the application of the envelop theorem give

S ′
t

(
W ?
t

)
+ βξwEt

[
Λt+1

Λt
U ′
t+1

(
W ?
t

)]
= 0 (3.45a)

U ′
t

(
Wt−1(ς)

)
Γt

= S ′
t

(
ΓtWt−1(ς)

)
+ βξpEt

[
Λt+1

Λt
U ′
t+1

(
ΓtWt−1(ς)

)]
(3.45b)

with the derivative of the union profit at W :

S ′
t

(
W
)

= εl,t
1 − θs(1 + ψs)

1 + ψs

(
W
Wt

)−(1+ψs)θs

Υ(1+ψs)θs
t Lt

+θs

(
W
Wt

)−(1+ψs)θs−1

Υ(1+ψs)θs
t

Wm
t

Wt
Lt +

ψs
1 + ψs

εl,tLt

(3.46)

Let’s write temporarily, in order to simplify notations, W , the price inherited from the past. One

can rewrite, one period ahead

U ′
t+1

(
W
)

= Ωt+1,tS
′
t+1

(
Ωt+1,tW

)
+ βξpΩt+1,tEt+1

[
Λt+2

Λt+1
U ′
t+2

(
Ωt+1,tW

)]

iterating toward the future and applying conditional expectation gives

Et
[
U ′
t+1

(
W
)]

= Et

 ∞∑
j=0

(βξp)
jΩt+1+j,t

Λt+1+j

Λt+1
S ′
t+1+j

(
Ωt+1+j,tW

)
Substituting in the first order condition (pour W = W ?

t ), one gets the following condition for an

optimal wage choice by a union that receives a positive signal:

Et

 ∞∑
j=0

(βξp)
jΩt+j,t

Λt+j
Λt

S ′
t+j

(
Ωt+j,tW ?

t

) = 0 (3.47)

The optimal wage W ?
t is the nominal wage that insures that the sum of current and expected

discounted marginal profits are zero when the union can only revise nominal wages by using the

ad hoc rule (3.42).
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It is possible to obtain a recursive expression for multiplier Υt that appears in the expression for

a union profit. Equation (3.39) can be written equivalently in the form

Υ1−θs(1+ψs)
t =

∫ 1

0

(
Wt(ς)
Wt

)1−θs(1+ψs)

dς

The wage offered by the union at date t appears under the integral sign. This price has been

determined optimaly j periods before with probability (1−ξw)ξjw. We can then rewrite the integral

as

Υ1−θs(1+ψs)
t = (1 − ξw)

∞∑
j=0

ξjw

(
Ωt,t−jW ?

t−j

Wt

)1−θs(1+ψs)

where W ?
t−j is the optimal wage at date t − j. Finally, one can interpret the infinite sum as the

solution of the following recursive equation:

Υ1−θs(1+ψs)
t = (1 − ξw)

(
W ?
t

Wt

)1−θs(1+ψs)

+ ξw

(
Ωt,t−1

Wt/Wt−1

)1−θs(1+ψs)

Υ1−θs(1+ψs)
t−1 (3.48)

One can get a more explicit expression for the wage that satisfies equation (3.47). Substituting in

this equation the expression for marginal profit (3.46) and dividing by W ?
t

−(1+ψs)θs , one gets

w?t
wt

=
θs(1 + ψs)

θs(1 + ψs) − 1
H1,t

H2,t
+

ψs
θs(1 + ψs) − 1

(
w?t
wt

)1+(1+ψs)θs H3,t

H2,t
(3.49)

where w?t is the real wage obtained by the union at date t when it can adjust the nominal wage in

an optimal manner and wt the real nominal wage in the economy, with

H1,t = Et
∞∑
i=0

(βξw)jλt+jwmt+j

(
Ωt+j

wt+j
wt

Pt+j
Pt

)−(1+ψs)θs

Υ(1+ψs)θs
t+j Lt+j (3.50a)

H2,t = Et
∞∑
i=0

(βξw)jλt+jεl,t+jwt+j

(
Ωt+j

wt+j
wt

Pt+j
Pt

)1−(1+ψs)θs

Υ(1+ψs)θs
t+j Lt+j (3.50b)

H3,t = Et
∞∑
i=0

(βξw)jλt+jεl,t+jwt+j
Ωt+j

wt+j
wt

Pt+j
Pt

Lt+j (3.50c)
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Noticing that wt+j/wt, the growth factor of the real wage between t and t+ j, can be equivalently

written as Πj
i=1$t+i ($t is the growth factor of the real wage between t and t − 1) and that we

have

Ωt+j,t = (1 + g)j
(

j∏
h=1

Et+h

) 1
1−ρx

(
j−1∏
h=0

π̄t+h

)γw (j−1∏
h=0

πt+h

)1−γw

,

we can finally represent variables H1,t, H2,t and H3,t in the recursive form

H1,t = λtw
m
t LtΥ(1+ψs)θs

t + βξwEt


 $t+1πt+1

(1 + g)E
1

1−ρx
t+1 π

γw
t−1π̄

1−γw
t

(1+ψs)θs

H1,t+1

 (3.51a)

H2,t = λtεl,twtLtΥ(1+ψs)θs
t + βξwEt


 $t+1πt+1

(1 + g)E
1

1−ρx
t+1 π

γw
t−1π̄

1−γw
t

(1+ψs)θs−1

H2,t+1

 (3.51b)

H3,t = λtεl,twtLt + βξwEt

 (1 + g)E
1

1−ρx
t+1 π

γw
t−1π̄

1−γw
t

$t+1πt+1

H3,t+1

 (3.51c)

Noticing that ϑs,t ≡
∫ 1

0
Wt(ς)
Wt

dς can be written in the recursive form

ϑs,t = (1 − ξw)
w?t
wt

+ ξw
(1 + g)E

1
1−ρx
t π

γw
t−1π̄

1−γw
t

$tπt
ϑs,t−1 (3.52)

we can rewrite equation (3.40) as

ψsϑs,t
1 + ψs

+
Υt

1 + ψs
= 1 (3.53)

In the end, wage dynamics are characterized by equations (3.45), (3.52), (3.48), (3.49), (3.51a),

(3.51b), (3.51c).
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3.4 Government and monetary authority

3.4.1 Fiscal policy

We assume that exogenous government expenditures Gt = gtYt are exactly financed by lump

sum taxes:

Tt = PtGt.

3.4.2 Central Bank

We assume that the behavior of the central bank is adequately described by a simple Taylor rule:

Rt = R
ρR
t−1

[
R?
(
πt−1

π̄t

)rπ ( Yt
Yt

)rY ]1−ρR
εR,t (3.54)

where π̄t is the inflation target of the central bank, Yt is a reference output level to be defined

later, log εR,t is an AR(1) stationary process with zero mean.

3.5 General equilibrium

3.5.1 Price distortion

Prices in the intermediary good sector are heterogeneous. However, it is possible to show that

this heterogeneity doesn’t hinder aggregation. We know that the firms of this sector choose all

the same mix of factor of production in the sense that the ratio of capital demand to labor demand

is constant across firms (see equation 3.23). Expressing labor demand of firm ι as a function of its

demand of physical capital, we can write the production of this firm

yt(ι) =
(
AtL

d
t

Kd
t

)1−α

Kd
t (ι)

When Kd
t ≡

∫ 1

0
Kd
t (ι)dι is aggregate demand for physical capital and yt ≡

∫ 1

0
Yt(ι)dι represents

the sum of intermediary productions, we can write directly

yt =
(
Kd
t

)α (
AtL

d
t

)1−α
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The sum of intermediary productions is different from Yt, because aggregation technology isn’t

linear. Integrating the demand function for good ι from the final good producers (3.18) over ι, we

get

yt = ∆p,tYt (3.55)

with

∆p,t ≡
1

1 + ψf

∫ 1

0

((
Pt(ι)/Pt

Θt

)−(1+ψf )θf

+ ψf

)
dι (3.56)

Price distortion can be written recursively in the following manner:

∆p,t =
1

1 + ψf
Θ

(1+ψf )θf
t ∇p,t +

ψf
1 + ψf

(3.57a)

∇p,t = (1 − ξp)
(
P ?t
Pt

)−(1+ψf )θf

+ ξp

(
π̄
γp
t π

1−γp
t−1

πt

)−(1+ψf )θf

∇p,t−1 (3.57b)

where the Lagrange multiplier Θt is defined recursively as well. Then, we have

∆p,tYt =
(
Kd
t

)α (
AtL

d
t

)1−α
(3.58)

3.5.2 Wage distortion

Here, we show how to link aggregate labor supply by the households with aggregated labor sup-

ply by the employment agency to the firms of the intermediary good sector This link is affected

by the heterogeneity of wages induced by their nominal rigidity. Integrating labor demand for

type ς by the employment agency (3.38) over ς , we find directly

Lt = ∆w,tLt (3.59)

with

∆w,t ≡
1

1 + ψs

∫ 1

0

((
Wt(ς)/Wt

Υt

)−(1+ψs)θs

+ ψs

)
dς (3.60)
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Wage distortion can be written in recursive form:

∆w,t =
1

1 + ψs
Υ(1+ψs)θs
t ∇w,t +

ψs
1 + ψs

(3.61a)

∇w,t = (1 − ξw)
(
w?t
wt

)−(1+ψs)θs

+ ξs

 (1 + g)E
1

1−ρx
t π̄

γw
t π

1−γw
t−1

$tπt

−(1+ψs)θs

∇w,t−1 (3.61b)

where the Lagrange multiplier Υt is defined recursively in equation (3.48).

3.5.3 Dividends paid by intermediary good firms

Firms in the intermediary good sector interact in monopolistic competition and make profits that

are paid to households in the form of dividends. The sum of nominal profits at date t is

Πt =
∫ 1

0

Πt(ι)dι

=
∫ 1

0

(
εy,t

Pt(ι)
Pt

−mct

)
PtYt(ι)dι

= εy,t

∫ 1

0

Pt(ι)Yt(ι)dι− Ptmctyt

= εy,tPtYt −
(
Ptr

k
t

∫ 1

0

Kd
t (ι)dι+Wt

∫ 1

0

Ldt (ι)dι
)

= Pt
(
εy,tYt − rktK

d
t − wtL

d
t

)
As households own the firms, the profits are paid to them. The repartition of these profits between

the households in undetermined in general equilibrium, but we know that

∫ 1

0

D1,t(h)dh = Pt
(
εy,tYt − rktK

d
t − wtL

d
t

)
(3.62)
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3.5.4 Dividends paid by the unions

In the same way, we can compute aggregate nominal profit of the unions at date t. These profits

as well are paid to the households. We have

St =
∫ 1

0

St(ς)dς

=
∫ 1

0

(εl,tWt(ι) −Wm
t ) lt(ς)dς

= εl,t

∫ 1

0

Wt(ς)lt(ς)dς −Wm
t Lt

= εl,tWtLt −Wm
t Lt

and, then, ∫ 1

0

D2,t(h)dh = εl,tWtLt −Wm
t Lt (3.63)

3.5.5 Equilibrium in factor markets and in bond markets

In general equilibrium, labor supply form the employment agency equals aggregate labor de-

mand by firms of the intermediary good market. In the same way, aggregate supply of physical

capital by the households equals aggregate demand from these firms. In formal terms,

Lt ≡ ∆−1
w,t

∫ 1

0

Lt(h)dh =
∫ 1

0

Ldt (ι)dι ≡ Ldt (3.64)

K̃t ≡
∫ 1

0

zt(h)Kt−1(h)dh =
∫ 1

0

Kd
t (ι)dι ≡ Kd

t (3.65)

Finally, aggregate demand for bonds must be zero, as we assume a close economy and no gov-

ernment debt. ∫ 1

0

Bt(h)dh = 0 (3.66)

3.5.6 Equilibrium on the good market

By summing the budget constraints of the households (3.2) over h ∈ [0, 1] and by substituting the

equilibrium conditions on the bond market, the definition of aggregate dividends and the budget
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constraint of the government, we get

PtGt + PtCt + pI,tPtIt = Wm
t Lt + Ptr

K
t ztKt−1 + Pt

(
εy,tYt − rktK

d
t − wtL

d
t

)
+ εltWtLt −Wm

t Lt

After simplification and knowing that the factor markets are in equilibrium, we obtain

Gt + Ct + pI,tIt = εy,tYt + (εl,t − 1)wtLt (3.67a)

or equivalently

Gt + Ct + pI,tIt = εy,t∆−1
p,tyt + (εl,t − 1)∆−1

w,twtLt (3.67b)

3.6 Long run

The economy described in the model is growing at a constant rate in the long run, in absence of

shocks. In order to compute a local approximation in order to solve it and later to estimate it, we

need first to make it stationary.

In this model, there is a single source of growth in the long run: the Harrodian technical change

that is characterized by a stochastic trend (with a deterministic component) and affects most of

the real variables. In order to stationarize the model, we divide all non–stationary variables by

AT,t or a power of this variable. In this section we present the stationarized model and then its

stationary state.

3.6.1 Stationary version of the model

On the household side, we write Ct ≡ ĈtAT,t, λt = λ̂tA−σc
T,t , wmt = ŵmt AT,t, It ≡ ÎtAT,t. In order

to make estimation (or calibration) of the long run level of εL,t (ie the scale factor that lets obtain

the desired long run level for labor hours), we redefine the utility function, replacing Lt by Lt/L
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where L is the long run level of labor hours.

(
Ĉt − η

AT,t−1

AT,t
Ĉt−1

)−σc
exp

{
εL,t

σc − 1
1 + σl

(
Lt
L

)1+σl
}

= λ̂t (3.68)

λ̂t = βεB,tRtEt

[(
AT,t+1

AT,t

)−σc λ̂t+1

πt+1

]
(3.69)

[
Ĉt − η

AT,t−1

AT,t
Ĉt−1

]1−σc εL,t
L

exp

{
εL,t

σc − 1
1 + σl

(
Lt
L

)1+σl
}(

Lt
L

)σl
= λ̂tŵ

m
t (3.70)

pI,t
εI,t

= Qt

[
1 − S

(
Ît

Ît−1

AT,t

AT,t−1

)
− Ît

Ît−1

AT,t

AT,t−1
S ′

(
Ît

Ît−1

AT,t

AT,t−1

)]

+ βEt

 λ̂t+1

λ̂t

(
AT,t+1

AT,t

)−σc
Qt+1

εI,t+1

εI,t

(
Ît+1

Ît

AT,t+1

AT,t

)2

S ′

(
Ît+1

Ît

AT,t+1

AT,t

) (3.71)

Qtδ
′ (zt) = rkt (3.72)

Qt = βEt

[
λ̂t+1

λ̂t

(
AT,t+1

AT,t

)−σc (
Qt+1

(
1 − δ(zt+1)

)
+ rkt+1zt+1

)]
(3.73)

Notice that Tobin’s Q Qt is a stationary variable. Therefore, by its definition, the Lagrange multi-

plier µt is trended. We write µ̂t = µtA
σc
T,t.

Let Kt ≡ K̂tAT,t, and the dynamics for the stock of capital is

K̂t = (1 − δ(zt))
AT,t−1

AT,t
K̂t−1 + εI,t

(
1 − S

(
Ît

Ît−1

AT,t

AT,t−1

))
Ît (3.74)

On the production side, the factor price frontier becomes

ŵtL
d
t

rkt K̂
d
t

=
1 − α

α
. (3.75)
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Marginal cost is written

mct = Aα−1
C,t

(
rkt
α

)α(
ŵt

1 − α

)1−α

(3.76)

For the price equations, we define Zi,t = Ẑi,tA1−σc
T,t for i = 1, 2 and 3, then,

P ?t
Pt

=
θf (1 + ψf )

θf (1 + ψf ) − 1
Ẑ1,t

Ẑ2,t

+
ψf

θf (1 + ψf ) − 1

(
P ?t
Pt

)1+(1+ψf )θf Ẑ3,t

Ẑ2,t

(3.77)

and

Ẑ1,t = λ̂tmctΘ
(1+ψf )θf
t Ŷt + βξpEt

(AT,t+1

AT,t

)1−σc
(

πt+1

π
γp
t−1π̄

1−γp
t

)(1+ψf )θf

Ẑ1,t+1

 (3.78a)

Ẑ2,t = λ̂tεy,tΘ
(1+ψf )θf
t Ŷt + βξpEt

(AT,t+1

AT,t

)1−σc
(

πt+1

π
γp
t−1π̄

1−γp
t

)(1+ψf )θf−1

Ẑ2,t+1

 (3.78b)

Ẑ3,t = λ̂tεy,tŶt + βξpEt

[(
AT,t+1

AT,t

)1−σc
(
π
γp
t−1π̄

1−γp
t

πt+1

)
Ẑ3,t+1

]
(3.78c)

Equations (3.34) and (3.35) are unchanged.

For the unions and the employment agency, we define Hi,t = Ĥi,tA1−σc
T,t for i = 1, 2 and 3,

w?t = AT,tŵ
?
t and $t = $̂tAT,t/AT,t−1. The relative wage of a union that has the possibility

to reoptimize in period t is

ŵ?t
ŵt

=
θs(1 + ψs)

θs(1 + ψs) − 1
Ĥ1,t

Ĥ2,t

+
ψs

θs(1 + ψs) − 1

(
ŵ?t
ŵt

)1+(1+ψs)θs Ĥ3,t

Ĥ2,t

(3.79)

Ĥ1,t = λ̂tŵ
m
t LtΥ(1+ψs)θs

t + βξwEt

(AT,t+1

AT,t

)1−σc
(
$̂t+1πt+1

π
γw
t π̄

1−γw
t

)(1+ψs)θs

Ĥ1,t+1

 (3.80a)
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Ĥ2,t = λ̂tεl,tŵtLtΥ(1+ψs)θs
t + βξwEt

(AT,t+1

AT,t

)1−σc
(
$̂t+1πt+1

π
γw
t π̄

1−γw
t

)(1+ψs)θs−1

Ĥ2,t+1

 (3.80b)

Ĥ3,t = λ̂tεl,tŵtLt + βξwEt

[(
AT,t+1

AT,t

)1−σc
(
π
γw
t π̄

1−γw
t

$̂t+1πt+1

)
Ĥ3,t+1

]
(3.80c)

ϑs,t can be expressed as a function of stationarized wages:

ϑs,t = (1 − ξw)
ŵ?t
ŵt

+ ξw
π̄
γw
t π

1−γw
t−1

$̂tπt
ϑs,t−1 (3.81)

Equation (3.53) remains unchanged. Finally, wage distortion is expressed as a function of station-

arized wages:

∇w,t = (1 − ξw)
(
ŵ?t
ŵt

)−(1+ψs)θs

+ ξw

(
π̄
γw
t π

1−γw
t−1

$̂tπt

)−(1+ψs)θs

∇w,t−1 (3.82)

Equilibrium conditions on the good and factor markets are the same for the stationarized vari-

ables.

3.6.2 Stationary state

At the stationary state, we have

(
Ĉ − η

1 + g
Ĉ

)−σc
exp

{
L̃
σc − 1
1 + σl

}
= λ̂ (3.83)

λ̂ = βR(1 + g)−σc
λ̂

π?
(3.84)

[
Ĉ − η

1 + g
Ĉ

]1−σc L̃
L

exp
{
L̃
σc − 1
1 + σl

}
= λ̂ŵm (3.85)

31



Q = 1 (3.86)

δ′ (z̄) = rk (3.87)

1 = β(1 + g)−σc
(
1 − δ̄ + rkz̄

)
(3.88)

K̂ =
1 + g

g + δ̄
Î (3.89)

ŵLd

rkK̂d
=

1 − α

α
(3.90)

mc =
(
rk

α

)α(
ŵ

1 − α

)1−α

(3.91)

P ?

P
=

θf (1 + ψf )
θf (1 + ψf ) − 1

Ẑ1

Ẑ2

+
ψf

θf (1 + ψf ) − 1

(
P ?

P

)1+(1+ψf )θf Ẑ3

Ẑ2

(3.92)

Ẑ1 = λ̂mcΘ(1+ψf )θf Ŷ + βξp(1 + g)1−σcẐ1 (3.93a)

Ẑ2 = λ̂Θ(1+ψf )θf Ŷ + βξp(1 + g)1−σcẐ2 (3.93b)

Ẑ3 = λ̂Ŷ + βξp(1 + g)1−σcẐ3 (3.93c)

ϑf =
P ?

P
(3.94)
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ψfϑf

1 + ψf
+

Θ
1 + ψf

= 1 (3.95)

∆p =
1

1 + ψf
Θ(1+ψf )θf∇p +

ψf
1 + ψf

(3.96a)

∇p =
(
P ?t
Pt

)−(1+ψf )θf

(3.96b)

Θ =
P ?

P
(3.97)

ŵ?

ŵ
=

θs(1 + ψs)
θs(1 + ψs) − 1

Ĥ1

Ĥ2

+
ψs

θs(1 + ψs) − 1

(
ŵ?

ŵ

)1+(1+ψs)θs Ĥ3

Ĥ2

(3.98)

Ĥ1 = λ̂ŵmLΥ(1+ψs)θs + βξw(1 + g)1−σcĤ1 (3.99a)

Ĥ2 = λ̂ŵLΥ(1+ψs)θs + βξw(1 + g)1−σcĤ2 (3.99b)

Ĥ3 = λ̂ŵL + βξw(1 + g)1−σcĤ3 (3.99c)

ϑs =
ŵ?

ŵ
(3.100)

ψsϑs
1 + ψs

+
Υ

1 + ψs
= 1 (3.101)

∆w =
1

1 + ψs
Υ(1+ψs)θs∇w +

ψs
1 + ψs

(3.102a)
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∇w =
(
ŵ?

ŵ

)−(1+ψs)θs

(3.102b)

Υ = 1 (3.103)

R = R? (3.104)

∆pŶ =
(
K̂d
)α (

Ld
)1−α

(3.105)

L = ∆wL (3.106)

Ld = ∆wL (3.107)

z̄

1 + g
K̂ = K̂d (3.108)

Ĉ + Î = (1 − g?) Ŷ (3.109)

We can write equations (3.93a) to (3.93c) equivalently as

Ẑ1 =
λ̂mcΘ(1+ψf )θf Ŷ

1 − βξp(1 + g)1−σc
(3.110a)

Ẑ2 =
λ̂Θ(1+ψf )θf Ŷ

1 − βξp(1 + g)1−σc
(3.110b)

Ẑ3 =
λ̂Ŷ

1 − βξp(1 + g)1−σc
(3.110c)
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Substituting in (3.92), we get

P ?

P
=

θf (1 + ψf )
θf (1 + ψf ) − 1

mc+
ψf

θf (1 + ψf ) − 1

(
P ?

P

)1+(1+ψf )θf

Θ−(1+ψf )θf (3.111)

that implicitly define real marginal cost at the stationary state as a function of optimal relative

price P?/P and the Lagrange multiplier from the optimization program for the firm that produces

the homogeneous good. Furthermore, sustitution equation (3.97) in (3.95), (3.94), (3.96b) and

(3.96a) we get

Θ = ϑf =
P ?

P
= ∇p = ∆p = 1 (3.112)

Marginal cost at the stationary state is then

mc =
θf (1 + ψf ) − 1
θf (1 + ψf )

−
ψf

θf (1 + ψf )
=
θf − 1
θf

(3.113)

Finally, substituting (3.97) in equations (3.110a) to (3.110c) we obtain

Ẑ1 = mc
λ̂Ŷ

1 − βξp(1 + g)1−σc
(3.114a)

Ẑ2 = Ẑ3 = Ẑ1/mc (3.114b)

where λ̂, Ŷ are determined below iwth the other real variables.

We can write equations (3.99a) and (3.99c) in the following manner:

Ĥ1 =
λ̂ŵmLΥ(1+ψs)θs

1 − βξw(1 + g)1−σc
(3.115a)

Ĥ2 =
λ̂ŵLΥ(1+ψs)θs

1 − βξw(1 + g)1−σc
(3.115b)
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Ĥ3 =
λ̂ŵL

1 − βξw(1 + g)1−σc
(3.115c)

Substituting in (3.98) we get

ŵ?

ŵ
=

θs(1 + ψs)
θs(1 + ψs) − 1

ŵm

ŵ
+

ψs
θs(1 + ψs) − 1

(
ŵ?

ŵ

)1+(1+ψs)θs

Υ−(1+ψs)θs (3.116)

that implicitly defines the ratio of real wage received by the household to the real wage paid to the

employment agency as a function of optimal real relative wage, bw?/bw, and the Lagrange multiplier

from the optimization program of the employment agency.

Substituting equation (3.103) in equations (3.101), (3.100), (3.102b) and (3.102a) we obtain

Υ = ϑs =
ŵ?

ŵ
= ∇w = ∆w = 1 (3.117)

Then, we have

ŵm

ŵ
=
θs(1 + ψs) − 1
θs(1 + ψs)

− ψs
θs(1 + ψs)

(3.118)

Finally, subsituting (3.103) in (3.115a) to (3.115c) we get

Ĥ1 = ŵm
λ̂L

1 − βξw(1 + g)1−σc
(3.119a)

Ĥ2 = Ĥ3 = Ĥ1
ŵ

ŵm
(3.119b)

Equations (3.104) and (3.84) imply

R? =
π?

β
(1 + g)σc (3.120)

In practive, we are estimating (or calibrating) R? and π? then we deduce β conditionally to the

current estimation of the growth rate along the balanced growth path, g. From equation (3.88) we
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get the return on capital at the steady state:

rk =
(1 + g)σc − β(1 − δ̄)

βz̄
(3.121)

where δ̄ and z̄ are estimated (or calibrated). Equation (3.87) establishes the following constraints

on the derivative of the depreciation function at the steady state

δ′ (z̄) =
(1 + g)σc − β(1 − δ̄)

βz̄
(3.122)

Conditionally to the long run level of real marginal cost and return on capital, we obtain steady

state for the average real wage (relative to labor efficiency trend) using equation (3.91):

ŵ =
[
mc
( α
rk

)α] 1
1−α

(1 − α) (3.123)

Along the balanced growth path, real wage growth rate is the same as the growth rate of labor

efficiency:

$ = 1 + g (3.124)

Substituting (3.123) in (3.113) we obtain the real wage received by the household (still normalized

by labor efficiency trend) at the steady state:

ŵm =
(
θs(1 + ψs) − 1
θs(1 + ψs)

− ψs
θs(1 + ψs)

)[
mc
( α
rk

)α] 1
1−α

(1 − α) (3.125)

As price and wage distortion is zero at the steady state, we get

Ld = L = L (3.126)

and

Ŷ = ŷ =
(
K̂d
)α (

Ld
)1−α

(3.127)

In what follows, we write χX,Y the ratio of two variables X and Y . Equation (3.90) and (3.126)
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gives the capital labor ratio at the steady state:

χ
bKd,L =

ŵ

rk
α

1 − α
(3.128)

Using equations (3.126), (3.127) and (3.128) it follows that product per capita at the steady state is

χ
bY ,L = χα

bKd,L
(3.129)

On writes the equilibrium on the final good market (3.109) as

χ
bC,bY + χ

bI,bY = 1 − g? (3.130)

Using the equilibrium condition on the market for capital (3.108) as well as equations (3.128),

(3.129) and (3.89), one gets the share of investment in output at the steady state:

χ
bI,bY =

g + δ̄

z̄
χ1−α

bKd,L
(3.131)

We can then determine χ
bC,bY by complementarity, using equation (3.130). Dividing (3.85) by (3.83)

one gets (
Ĉ − η

1 + g
Ĉ

)
L̃

L
= ŵm

Multiplying and dividing the left handside by Ŷ , one gets

χ
bC,bY χbY ,L

(
1 − η

1 + g

)
L̃ = ŵm

and then

L̃ =
ŵm

χ
bC,bY χbY ,L

1 + g

1 + g − η
(3.132)

Then,

Ŷ = χ
bY ,LL (3.133)
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Ĉ = χ
bC,bY Ŷ (3.134)

Î = χ
bI,bY Ŷ (3.135)

Finally, the steady state of the Lagrange multiplier associated with the household budget con-

straint is obtained from equation (3.83):

λ̂ =
(
Ĉ − η

1 + g
Ĉ

)−σc
exp

{
L̃

1 − σc
1 + σl

}
(3.136)

3.7 Specifying functional forms

3.7.1 The depreciation function

The rate of depreciation of physical capital depends on the utilization rate of capital. This function

must verify δ(0) = 0 and δ(z)′ > 0 for any z ∈ [0, 1] and we write δ(z̄) = δ̄. We use the following

functional form:

δ(z) = δ̄e
δ̄′
δ̄

(z−z̄) (3.137)

where δ̄′ ≡ δ′(z̄) is the first derivative of the rate of depreciation evaluated at the steady state.

This parameter is linked to parameters g, σc, β, δ̄ and z̄ thru equation (3.122) :

δ̄
′ =

(1 + g)σc − β(1 − δ̄)
βz̄

> 0

This parameter should therefore be estimated or calibrated. An alternative to calibrate (or esti-

mate) δ̄ is to calibrate (or estimate) the ratio χ
bI,bY . One can show that

δ̄ =

θfχ
bI, bY

αβ(θf−1) (1 + g)σc − θfχ
bI, bY

α(θf−1) − g

1 − θfχ
bI, bY

α(θf−1)

It is possible to examine the data in order to form a prior on χ
bI,bY . It is a flexible way of exploiting

information about the relation between production and investment in the long run.
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3.7.2 The investment adjustment cost function

Adjusting its investment level is costly for the household. This cost is described by function S.

One assumes that the cost is zero along the balance growth path, S(1+ g) = 0, that S(1)′ = 0, and

the cost is convex,t S ′′ > 0. We choose the following specification form:

S(x) ≡ ψ

2
(x− (1 + g))2 (3.138)

where x ≡ It/It−1 is the growth factor for investment and ψ a parameter, real and positive, mea-

suring the size of adjusmtent costs. It needs to be calibrated or estimated. We can then express

the stationarized adjustment cost function for investment as

S

(
Ît

Ît−1

)
≡ ψ(1 + g)2

2

(
Ît

Ît−1

AT,t
AT,t−1

1
1 + g

− 1

)2

3.7.3 Share of labor income in the long run

Parameter α in the Cobb–Douglas production function used by the firms of the intermediary good

sector is linked to the share of labor income in value added in the long run. We could exploit this

information to form a prior on α, or, alternatively, estimate the share of labor income in the long

run and deduce from it the value of this technological parameter, as, at the steady state, we have

wL

Y
=
θf − 1
θf

(1 − α)

or, equivalently,

α = 1 − θf
θf − 1

wL

Y

4 Estimation

4.1 Data

The model is estimated with quarterly data on the period 1994–2008 (3rd quarter). We use the

following observed variables: GDP, private consumption expenditures, private investment (sum
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of private growth capital formation in residential buildings and in plant and equipment), con-

sumer price index. For the short term nominal interest rate we use the Bank of Japan target rate

of unsecured overnight call rate.

4.2 Priors

The following parameters were calibrated: the steady value of the depreciation rate (δ) is set to

0.025, a value usual for quarterly model. The inflation target was set to 0.5%. Given that on

the estimation sample, monetary policy was very often constrained by the zero lower bound

for nominal interest rate, this parameter is hard to set and hard to interpret. It certainly can’t

be interpreted as the inflation rate desired by the monetary authority, but rather as a parameter

convenient to describe the policy that effectively took place during this crisis period.

The priors used for estimating the other parameters are described in the first three columns of

the results tables. The are set so as to reflect the domain of definition of the parameters and their

values are often found in the literature or in similar models estimated on US or European data.

Given the relatively short estimation sample, they need to be relatively informative.

4.3 Estimation results

Following on the arguments developed in the first section of the treatment of trends in DSGE

models, we perform two estimation. The first one uses the rate of growth of GDP, private con-

sumption, private investment and CPI inflation. In the second, we use instead the logarithm

of the level of these variables. The resuls are given in Tables 1 and 2. The prior and posterior

distribution of the parameters are represented in Figures 1 to 10.

Comparing the estimation results, one observes that estimating in the growth rate or in the level

of the variables doesn’t affect greatly the estimation results. For several parameters, the posterior

distribution is very close to the prior. This indicates that the parameters are not identified (or

that the prior is too tight). This is in part the consequence of a relatively short estimation sample.

One could consider using additional observable variables, notably for the behavior of the labor

market, but it could also lead to the reformulation of a more parsimonious model.

41



It appears that the data suggest an estimated value for the probability of not receiving a positive

signal for a price change, ξp, is 0.37, noticeably lower than the prior mean of 0.72, and than the

usual findings for Europe or the U.S. If confirmed, this result could suggest smaller nominal

rigidities on the good markets in Japan.

The estimation of the monetary policy rule suggests that the inertia of the policy rule as measured

by ρR is less important than expected. On the other hand, the reaction to the output gap, ry , is

more important. Given the fact that the zero lower bound for nominal interest rate is binding over

a large part of the sample, one should be careful not to infer too much from these results about

the behavior of the central bank.

Finally, writing the model with the log of interest rate instead of interest rate itself—in order

to insure that the nominal interest rate remains non–negative—doesn’t affect the estimation re-

sults, even for the parameters of the monetary policy rule. In fact, it appears that if log–linear

approximation of nominal interest rate is able to mechanically constrain the model to generate

non–negative levels of the nominal interest rate, it fails to diffuse the consequence of the zero

lower bound to the other parts of the model.

5 Conclusion

In this paper, we discuss the issue of integrating trends in DSGE models. We show how it is

possible to estimate trends and cycle components simultaneously, without detrending the data.

In order to illustrate this methodology, we estimate a DSGE model with standard features on

Japanese data. We explore two different approaches. One estimates the model on the growth

rate of nonstationary variables, the other estimates with the original variables in level. In the

latter case, we need to use the diffuse Kalman filter. Examination of the estimation results shows

very little differences between both approaches. If this equivalence results is confirmed in other

studies, it would mean that there is not much gain to use the most complicated procedure with

the diffuse Kalman filter.

In this paper, we also study the possibility to compute a linear approximation of the logarithm

of nominal interest rate in order to satisfy the zero lower bound. However, this procedure fails
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Figure 1: Estimation in growth rate: Prior and posterior distributions (I)

to transmit the effects of the zero lower bound to the rest of the model. This result confirms that

there is no simple escape to the necessity of using nonlinear methods to handle the zero lower

bound and these methods are not available for models of the size considered in this paper.

As often, the results in this paper are preliminary and should be completed by further study. An

interesting development would be to estimate the same model on a longer dataset.
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Parameter Prior Posterior
Distribution Mean S.D. Mode Mean 90% HPD interval

param
σc Normal 0.840 0.5 0.8360 0.8514 0.7317 0.9776
σl Normal 1.820 0.5 1.8374 1.7180 0.8957 2.5315
η Beta 0.560 0.2 0.1544 0.1836 0.0615 0.2977
ξp Beta 0.720 0.1 0.3700 0.4056 0.2759 0.5355
ξw Beta 0.790 0.1 0.7891 0.7840 0.6965 0.8806
ψf Normal -5.500 1.0 -4.8195 -4.8380 -6.5855 -3.0893
ψs Normal -5.500 1.0 -5.4679 -5.5056 -7.1343 -3.8966
θf Normal 6.000 1.0 6.1215 6.1786 4.5482 7.7292
θs Normal 6.000 1.0 6.0068 5.9342 4.2381 7.5375
α Beta 0.333 0.1 0.2955 0.3030 0.2441 0.3650
γp Beta 0.290 0.1 0.1878 0.2079 0.0830 0.3347
γw Beta 0.300 0.1 0.2528 0.2757 0.1237 0.4251
ρR Beta 0.830 0.1 0.5811 0.5807 0.4576 0.7055
rπ Normal 1.640 0.5 1.3620 1.4290 0.8806 1.9603
ry Normal 0.140 0.5 1.6246 1.7418 1.2600 2.2245
g Normal 0.003 0.001 0.0033 0.0031 0.0019 0.0043
ψ Normal 0.200 0.05 0.2251 0.2361 0.1686 0.3031
z̄ Normal 0.800 0.1 0.7995 0.8012 0.6384 0.9662
ρAT

Beta 0.500 0.1 0.3828 0.3919 0.2586 0.5313
ρAC

Beta 0.700 0.1 0.6114 0.6001 0.4234 0.7670
ρεB

Beta 0.700 0.1 0.9267 0.9090 0.8628 0.9556
ρεL

Beta 0.700 0.1 0.7232 0.7035 0.5453 0.8797
ρpI

Beta 0.700 0.1 0.6394 0.6223 0.4523 0.8005
ρεI

Beta 0.700 0.1 0.6069 0.6289 0.4688 0.7918
ρεy

Beta 0.700 0.1 0.8295 0.8050 0.6906 0.9283
ρεl

Beta 0.700 0.1 0.7468 0.7400 0.5857 0.9113
ρεR

Beta 0.700 0.1 0.6464 0.6388 0.4873 0.8002
ρεg

Beta 0.700 0.1 0.7284 0.7135 0.5566 0.8891
SEAT InvGam 0.008 0.002 0.0055 0.0058 0.0045 0.0070
SEAC InvGam 0.008 ∞ 0.0154 0.0209 0.0071 0.0356
SEεB InvGam 0.010 ∞ 0.0044 0.0048 0.0037 0.0058
SEεL InvGam 0.010 ∞ 0.0046 0.0077 0.0024 0.0139
SEpI InvGam 0.010 ∞ 0.0045 0.0055 0.0028 0.0080
εI InvGam 0.010 ∞ 0.0062 0.0061 0.0034 0.0087
εy InvGam 0.010 ∞ 0.0043 0.0042 0.0032 0.0053
εl InvGam 0.010 ∞ 0.0035 0.0040 0.0024 0.0056
εR InvGam 0.010 ∞ 0.0047 0.0049 0.0036 0.0061
εg InvGam 0.010 ∞ 0.0042 0.0055 0.0025 0.0085

Table 1: Estimation results when variables observed in growth rate
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Parameter Prior Posterior
Distribution Mean S.D. Mode Mean 90% HPD interval

param
σc Normal 0.840 0.5 0.8416 0.8733 0.7490 0.9941
σl Normal 1.820 0.5 1.8109 1.7364 0.9046 2.5482
η Beta 0.560 0.2 0.1470 0.1703 0.0559 0.2828
ξp Beta 0.720 0.1 0.3723 0.4238 0.2802 0.5639
ξw Beta 0.790 0.1 0.7912 0.7937 0.7073 0.8852
ψf Normal -5.500 1.0 -4.8310 -4.9054 -6.7187 -3.1115
ψs Normal -5.500 1.0 -5.4719 -5.4792 -7.1547 -3.8521
θf Normal 6.000 1.0 6.0785 6.1190 4.5867 7.6886
θs Normal 6.000 1.0 6.0015 5.9678 4.3716 7.6729
α Beta 0.333 0.1 0.2909 0.3008 0.2396 0.3635
γp Beta 0.290 0.1 0.1869 0.2072 0.0762 0.3326
γw Beta 0.300 0.1 0.2533 0.2738 0.1170 0.4187
ρR Beta 0.830 0.1 0.5884 0.5848 0.4609 0.7074
rπ Normal 1.640 0.5 1.3831 1.4258 0.8678 1.9658
ry Normal 0.140 0.5 1.6456 1.7311 1.2517 2.2057
g Normal 0.003 0.001 0.0032 0.0031 0.0019 0.0042
ψ Normal 0.200 0.05 0.2263 0.2375 0.1667 0.3055
z̄ Normal 0.800 0.1 0.8002 0.7999 0.6377 0.9666
ρAT

Beta 0.500 0.1 0.3821 0.3906 0.2566 0.5257
ρAC

Beta 0.700 0.1 0.6152 0.5819 0.4041 0.7563
ρεB

Beta 0.700 0.1 0.9315 0.9155 0.8741 0.9572
ρεL

Beta 0.700 0.1 0.7232 0.7153 0.5518 0.8824
ρpI

Beta 0.700 0.1 0.6452 0.6277 0.4603 0.7998
ρεI

Beta 0.700 0.1 0.6084 0.6331 0.4633 0.7970
ρεy

Beta 0.700 0.1 0.8497 0.8233 0.7142 0.9329
ρεl

Beta 0.700 0.1 0.7491 0.7469 0.5925 0.9135
ρεR

Beta 0.700 0.1 0.6483 0.6492 0.4989 0.7992
ρεg

Beta 0.700 0.1 0.7287 0.7188 0.5574 0.8878
SEAT InvGam 0.008 0.002 0.0054 0.0057 0.0045 0.0070
SEAC InvGam 0.008 ∞ 0.0153 0.0242 0.0068 0.0436
SEεB InvGam 0.010 ∞ 0.0043 0.0047 0.0037 0.0057
SEεL InvGam 0.010 ∞ 0.0046 0.0129 0.0021 0.0274
SEpI InvGam 0.010 ∞ 0.0044 0.0056 0.0029 0.0082
εI InvGam 0.010 ∞ 0.0063 0.0062 0.0034 0.0088
εy InvGam 0.010 ∞ 0.0044 0.0043 0.0032 0.0053
εl InvGam 0.010 ∞ 0.0034 0.0041 0.0024 0.0057
εR InvGam 0.010 ∞ 0.0047 0.0048 0.0036 0.0061
εg InvGam 0.010 ∞ 0.0042 0.0056 0.0025 0.0088

Table 2: Estimation results when variables observed in level
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Parameter Prior Posterior
Distribution Mean S.D. Mode Mean 90% HPD interval

param
σc Normal 0.840 0.5 0.8363 0.8666 0.7484 0.9841
σl Normal 1.820 0.5 1.8375 1.6822 0.8894 2.5228
η Beta 0.560 0.2 0.1543 0.1816 0.0633 0.3008
ξp Beta 0.720 0.1 0.3700 0.4159 0.2712 0.5629
ξw Beta 0.790 0.1 0.7890 0.7883 0.6947 0.8752
ψf Normal -5.500 1.0 -4.8115 -4.8997 -6.6244 -3.1827
ψs Normal -5.500 1.0 -5.4605 -5.5124 -7.1231 -3.8352
θf Normal 6.000 1.0 6.1878 6.1482 4.6174 7.7365
θs Normal 6.000 1.0 6.0094 5.9689 4.3131 7.6758
α Beta 0.333 0.1 0.2952 0.3057 0.2453 0.3672
γp Beta 0.290 0.1 0.1882 0.2080 0.0793 0.3357
γw Beta 0.300 0.1 0.2531 0.2727 0.1200 0.4172
ρR Beta 0.830 0.1 0.5819 0.5836 0.4506 0.7044
rπ Normal 1.640 0.5 1.3667 1.4289 0.8599 1.9573
ry Normal 0.140 0.5 1.6321 1.7370 1.2569 2.2119
g Normal 0.003 0.001 0.0033 0.0031 0.0019 0.0042
ψ Normal 0.200 0.05 0.2249 0.2357 0.1667 0.3021
z̄ Normal 0.800 0.1 0.8000 0.8011 0.6386 0.9618
ρAT

Beta 0.500 0.1 0.3824 0.3925 0.2594 0.5273
ρAC

Beta 0.700 0.1 0.6115 0.5884 0.4122 0.7677
ρεB

Beta 0.700 0.1 0.9267 0.9110 0.8660 0.9549
ρεL

Beta 0.700 0.1 0.7232 0.7051 0.5433 0.8786
ρpI

Beta 0.700 0.1 0.6396 0.6228 0.4554 0.7973
ρεI

Beta 0.700 0.1 0.6075 0.6292 0.4673 0.7934
ρεy

Beta 0.700 0.1 0.8293 0.7993 0.6844 0.9286
ρεl

Beta 0.700 0.1 0.7478 0.7420 0.5832 0.9042
ρεR

Beta 0.700 0.1 0.6472 0.6400 0.4849 0.7960
ρεg

Beta 0.700 0.1 0.7285 0.7175 0.5523 0.8736
SEAT InvGam 0.008 0.002 0.0055 0.0057 0.0045 0.0070
SEAC InvGam 0.008 ∞ 0.0154 0.0234 0.0066 0.0429
SEεB InvGam 0.010 ∞ 0.0044 0.0048 0.0038 0.0057
SEεL InvGam 0.010 ∞ 0.0046 0.0138 0.0023 0.0387
SEpI InvGam 0.010 ∞ 0.0045 0.0056 0.0029 0.0081
εI InvGam 0.010 ∞ 0.0062 0.0061 0.0034 0.0088
εy InvGam 0.010 ∞ 0.0043 0.0042 0.0031 0.0053
εl InvGam 0.010 ∞ 0.0035 0.0041 0.0024 0.0058
εR InvGam 0.010 ∞ 0.0047 0.0048 0.0036 0.0060
εg InvGam 0.010 ∞ 0.0042 0.0054 0.0025 0.0083

Table 3: Estimation results for approximation around the log of interest rate
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Figure 2: Estimation in growth rate: Prior and posterior distributions (II)
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Figure 3: Estimation in growth rate: Prior and posterior distributions (III)
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Figure 4: Estimation in growth rate: Prior and posterior distributions (IV)
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Figure 5: Estimation in growth rate: Prior and posterior distributions (V)
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Figure 6: Estimation in level: Prior and posterior distributions (I)
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Figure 7: Estimation in level: Prior and posterior distributions (II)
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Figure 8: Estimation in level: Prior and posterior distributions (III)
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Figure 9: Estimation in level: Prior and posterior distributions (IV)
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Figure 10: Estimation in level: Prior and posterior distributions (V)
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