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Dealing with ZLB in DSGE models
An application to the Japanese economy

Stéphane Adjemian∗ Michel Juillard†

Abstract

In this paper we propose an estimation strategy for DSGE models
with occasionaly binding constraints, such as models with a zero lower
bound for the nominal interest rate (ZLB).

The usual likelihood approach is based on a first order approxi-
mation of the model around its deterministic steady state. This is
not possible when we deal with a model with occasionally binding
constraints, because the model is non differentiable everywhere and
because, putting this first problem aside, the agents in the approx-
imated model do not anticipate that the economy may hit the zero
lower bound in the future.

A medium scaled DSGE model with ZLB is estimated by the Simu-
lated Method of Moments, using the Extended Path approach to sim-
ulate artificial time series for the observed variables. The Extended
Path approach to simulation of stochastic forward–looking models,
takes into account the full nonlinearities of the deterministic part of the
model, but ignores the Jensen inequality. The extended path method is
well suited for models including the zero lower bound because (contrary
to the perturbation method) it does not rely on a strong smoothness
assumption and so can handle problems with non differentiabilities.
This approach proves to be feasible in practice.

Introduction

Currently, estimation of DSGE models is generally done on the basis of a
first order local approximation of the model. However, this approach is very
unsatisfactory when the economy is confronted to an occasionally binding
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constraint such as the zero lower bound (ZLB) for nominal interest rates,
because, with this solution strategy, the agents do not anticipate that the
economy may hit the zero lower bound in the future.

A global approximation method would be the best alternative, but its com-
putational burden would be very high for a medium-scaled model and such
strategy is not applicable to this day.

In this paper, we try to estimate the model with the Simulated Method of
Moments (SMM), using the Extended Path approach (EP) to simulate ar-
tificial time series for the observed variables. The Extended Path approach
to simulation of stochastic forward–looking models, takes into account the
full nonlinearities of the deterministic part of the model, but solves only
approximatively the effect of future uncertainty by using the expected value
of future shocks, zero by construction, instead of computing the expected
nonlinear effects of future shocks, therefore ignoring Jensen inequality.

The extended path method is well suited for models including the zero lower
bound because (contrary to the perturbation method) it does not rely on a
strong smoothness assumption and so can handle problems with non differ-
entiabilities. This approach proves to be feasible in practice.

In the case of the Japanese economy, the ZLB has been binding for almost
ten years. It is a major challenge for the utilization of DSGE models in the
case of Japan. The objective of this paper is to estimate a medium-scaled
DSGE model for the Japanese economy over the recent period. In this pa-
per, we evaluate the ability of a model, that we developed in a previous
study (Adjemian and Juillard, 2009), to reproduce the sample frequency of
hitting the ZLB, using GDP, consumption, investment, inflation, wages and
nominal interest rate as observed variables.

In the first section we introduce briefly the model. The extended path
method is presented in section 2 and the simulated method of moments in
section 3. Section 4 presents first estimation results and concludes.
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1 The model

The present model is strongly influenced by Smets and Wouters (2007). It
is a closed economy model. Nominal rigidities à la Calvo on price and wage,
with indexation on past inflation and steady state inflation, have a strong
influence on the monetary transmission mechanism. So, do real rigidities on
investment and endogenous capacity utilisation. The model contains a large
number of shocks. We don’t exploit all in the present paper.

1.1 Households

The economy is populated with a continuum of households h ∈ [0, 1]. Each
household values consumption of a composite good. We write Ct(h) the
demand of this good by household h in period t. A household offers as well
labor hours. We write Lt(h) the labor supply of household h in period t.
Welfare is defined as:

Wt(h) = ut(h) + βE[Wt+1(h)]

ut(h) =

[
Ct(h)− ηCt−1

]1−σc
1− σc

exp

{
εL,t

σc − 1

1 + σl
Lt(h)1+σl

} (1.1)

where εL,t is a shock to labor supply. log εL,t is an AR exogenous shock pro-
cess with mean log L̃ (this parameter gives us an extra degree of freedom for
adjusting the stationary level of hours). We choose this form for the utility
function in order to build a model compatible with balanced growth. We
assume that utility obtained by household h in period t depends not only
on its own consumption but as well on aggregate consumption in previous
period, Ct−1 =

∫ 1
0 Ct−1(h)dh. This is a mechanism of external habits.

The budget constraint of household h, in period t, in real terms, is the
following:

Ct(h) + pI,tIt(h) =

{
Bt−1(h)

Pt
− Bt(h)

PtεB,tRt
+ (1− τW,t)

Wm
t

Pt
Lt(h)

+ rkt zt(h)Kt−1(h) +
D1,t(h) + D2,t(h)

Pt

}
+Tt

(1.2)

where Pt is the aggregate price index; Rt = 1+ it, corresponds to the rate of
interest plus one, Bt(h) the nominal value of bonds detained by household
h at the end of period t, εBt is the risk premium requested by households
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in order to detain the bond; log εBt is an AR process with zero mean; It(h)
is investment of h during period t; log pI,t is an exogenous shock on the
relative price of investment and follows an AR process with zero mean; Wm

t

is the hourly wage rate received by household h in period t; Tt represents net
transfers received by the household during the period; D1,t(h) and D2,t(h)
are the dividends received from firms and from the unions that differentiate
household labor supply.
On the resource side, return on physical capital, rt, is given by

rkt = zt(h)Kt−1(h)

where the stock of physical capital at date t is

Kt(h) = (1− δ(zt(h)))Kt−1(h) + εI,t

(
1− S

(
It(h)

It−1(h)

))
It(h) (1.3)

zt(h) ∈ [0, 1] is the rate of utilization of physical capital with steady value
z? ; the depreciation rate, δ, is a function of the rate of utilization that ver-
ifies δ(0) = 0, δ(1) = 1, δ(z)′ > 0 for all z ∈ [0, 1] and we write δ(z?) = δ? ;
εI,t is a random shock to the efficiency of capital accumulation log εI,t is
an AR process with zero mean; function S describes adjustment costs on
investment, we assume S(1 + g) = 0, where g is the rate of growth of invest-
ment on the balanced growth path, furthermore S(1 + g)′ = 0 and S ′′ > 0.

Each household h chooses its consumption, labor supply, bond holdings, in-
vestment, and capital utilization rate so as to maximize its inter-temporal
utility (1.1) under the budget constraint (1.2) and the the law of evolution
of physical capital (1.3), taking as given evolution of prices and exogenous
variables.

The first order optimality conditions are given by:(
Ct(h)− ηCt−1

)−σc
exp

{
εL,t

σc − 1

1 + σl
Lt(h)1+σl

}
= λt(h) (1.4)

where λt(h) is the Lagrange multiplier associated to the real budget con-
straint,

λt(h) = βεB,tRtEt
[
λt+1(h)

πt+1

]
(1.5)

where πt+1 ≡ Pt+1/Pt is the inflation rate between period t and t+ 1,

ut(h) (σc − 1) εL,tLt(h)σl = −λt(h)
Wm
t

Pt
. (1.6)
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Writing µt(h) the Lagrange multiplier associated to the capital accumulation
function one gets:

pI,tλt(h) = µt(h)εI,t

[
1− S

(
It(h)

It−1(h)

)
− It(h)

It−1(h)
S ′
(

It(h)

It−1(h)

)]
+βEt

[
µt+1(h)εI,t+1

(
It+1(h)

It(h)

)2

S ′
(
It+1(h)

It(h)

)] (1.7)

µt(h)δ′ (zt(h)) = λt(h)rkt (1.8)

and at last:

µt(h) = βEt
[
µt+1(h)

(
1− δ(zt+1(h))

)
+ λt+1(h)rkt+1zt+1(h)

]
(1.9)

Given the symmetrical nature of the solution for the household’s problem,
we get the following aggregated relationships:

(Ct − ηCt−1)−σc exp

{
εL,t

σc − 1

1 + σl
L1+σl
t

}
= λt (1.10)

λt = βεB,tRtEt
[
λt+1

πt+1

]
(1.11)

utεL,t (σc − 1)Lσlt = −λt
Wm
t

Pt
(1.12)

pI,t
εI,t

=Qt

[
1− S

(
It
It−1

)
− It
It−1
S ′
(

It
It−1

)]
+βEt

[
λt+1

λt
Qt+1

εI,t+1

εI,t

(
It+1

It

)2

S ′
(
It+1

It

)] (1.13)

Qtδ
′ (zt) = rkt (1.14)

Qt = βEt
[
λt+1

λt

(
Qt+1

(
1− δ(zt+1)

)
+ rkt+1zt+1

)]
(1.15)

Here, Qt ≡ µt/λt is Tobin’s Q.
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1.2 Production

1.2.1 Final good producers

Producers of final good, Yt, operate in a perfectly competitive environment,
assembling a continuum of diversified intermediary goods written Yt(ι) with
ι ∈ [0, 1]. They have access to a unique constant return aggregation tech-
nology as in Kimball (1996), implicitly defined by∫ 1

0
Gf

(
Yt(ι)

Yt

)
dι = 1 (1.16)

where Gf is a strictly increasing concave function such that Gf (1) = 1. We
follow Dotsey and King (2005) or Levin et al. (2007) and adopt the following
functional form for this aggregation function:

Gf (x) =
θf (1 + ψf )

(1 + ψf )(θf (1 + ψf )− 1)

[(
1 + ψf

)
x− ψf

] (1+ψf )θf−1

(1+ψf )θf

−
[

θf (1 + ψf )

(1 + ψf )(θf (1 + ψf )− 1)
− 1

] (1.17)

Parameter ψf characterize the curvature of the demand function.

The producer of final good chooses the quantity of intermediary goods ι so
as to maximize her real profit:

Yt −
∫ 1

0

Pt(ι)

Pt
Yt(ι)dι

under the technological constraints (1.16) and (1.17). As the aggregation
function is homogeneous of degree one, it is equivalent to minimize cost per
unit with respect to the relative demand of intermediary good ι under the
technological constraint.

The first order condition of optimality determines the demand for interme-
diary good ι:

Yt(ι)

Yt
=

1

1 + ψf

[(
Pt(ι)/Pt

Θt

)−(1+ψf )θf
+ ψf

]
(1.18)

where Θt is the Lagrange multiplier associated with the technological con-
straints (1.16) and (1.17) for the representative firm. Substituting (1.18)
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in the technological constraints, one gets the following expression for the
Lagrange multiplier:

Θt =

(∫ 1

0

(
Pt(ι)

Pt

)1−θf (1+ψf )
dι

) 1
1−θf (1+ψf )

(1.19)

The price elasticity of demand is given by:

ε
(
Ỹt(ι)

)
= −

G ′
(
Ỹt(ι)

)
Ỹt(ι)G ′′

(
Ỹt(ι)

)
and, with particular aggregation function adopted in this study,

ε
(
Ỹt(ι)

)
= θf

[
1 + ψf −

ψf

Ỹt(ι)

]

When ψf is equal to zero, we get back to the more usual case of the CES
aggregator of Dixit and Stiglitz (1977) with a price elasticity of demand
equal to θf . More generally, one remarks that demand is more sensitive to
price when the level of demand is important if and only if parameter ψf is
positive. We expect therefore to obtain a negative value for this parameter.

Finally, as the final good sector is perfectly competitive, profit for the rep-
resentative firm must be zero and we derive the aggregate price index:

Pt =
ψf

1 + ψf

∫ 1

0
Pt(ι)dι+

1

1 + ψf

(∫ 1

0
Pt(ι)

1−(1+ψf )θfdι

) 1
1−(1+ψf )θf

(1.20)

1.2.2 Intermediary goods producers

A continuum of firms ι ∈ [0, 1] in monopolistic competition produce interme-
diary goods for the producers of the final good. These firms have all access
to the same Cobb–Douglas technology in to transform physical capital and
labor in differentiated intermediary goods:

Yt(ι) =
(
Kd
t (ι)

)α (
AtL

d
t (ι)
)1−α

(1.21)
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where Kd
t (ι) and Ldt (ι) are demands of intermediary good firm ι for physical

capital, and labor, respectively; At is technical progress, neutral in Harrod
sense. The latter term is further decomposed in a trend component AT,t
and a cyclical on AC,t. We have then,

∆ logAT,t ∼ AR(1) stationary with mean log(1 + g) (1.22a)

logAC,t ∼ AR(1) stationary with zero mean. (1.22b)

Each intermediary firm ι ∈ [0, 1] buys freely its production factors on com-
petitive markets taking their price as given. The firm ι ∈ [0, 1] decides upon
the mix of physical capital (Kd

t (ι)) and labor (Ldt (ι)) so as to minimize its
cost, rktK

d
t (ι) +wtL

d
t (ι), under the technological constraint (1.21). The firm

optimal behavior on the factor markets is summarized by the following factor
prices frontier:

wtL
d
t (ι)

rktK
d
t (ι)

=
1− α
α

(1.23)

where wt ≡Wt/Pt is the real wage. The ratio of capital to labor is invariant
across firms. Using the factor prices frontier, we rewrite the total cost of
firm ι as a function of the stock of capital:

CTt(ι) =
rktK

d
t (ι)

α

On the other hand, as the returns of scale is constant, we know that the
total cost can also be written as

CTt(ι) = mct(ι)Yt(ι)

where mct(ι) is the real marginal cost. We derive then the following expres-
sion for the marginal cost of firm ι:

mct(ι) = Aα−1t

(
rkt
α

)α(
wt

1− α

)1−α
≡ mct (1.24)

Again, marginal cost doesn’t depend on the size of the firm and is constant
across firms.

The nominal profit of a firm that offers price P at date t id given by:

Πt(P) =

(
εy,t
P
Pt
−mct

)
PtYt

1 + ψf
×(P

Pt

)−(1+ψf )θf (∫ 1

0

(
Pt(ι)

Pt

)1−(1+ψf )θf
df

) (1+ψf )θf
1−(1+ψf )θf

+ ψf


8



where log εy,t, a zero mean AR stationary process, is a shock to the sales of
the firm. This shock will show up in the Phillips curve.

Firm ι has market power but can’t decide of the its optimal price in each
period. Following a Calvo scheme, at each date, the firm receives a signal
telling it whether it can revise its price Pt(ι) in an optimal manner or not.
There is a probability ξp that the firm can’t revise its price in a given period.
In such a case, the firm follows the following rule:

Pt(ι) = [π̄t]
γp

[
Pt−1
Pt−2

]1−γp
Pt−1(ι) = ΓtPt−1(ι) (1.25)

where π̄t is the inflation target of the monetary authorities. More generally,
we write

Γt+j,t =

(
j−1∏
h=0

π̄t+h

)γp (j−1∏
h=0

πt+h

)1−γp

= Γt+1Γt+2 . . .Γt+j

the growth factor of the price of a firm that doesn’t receive a favorable signal
during j successive periods(for j = 0 we have Γt,t = 1; for j = 1, we have
Γt+1,t = Γt+1). When the firm ι receives a positive signal (with probability
1− ξp), it chooses price Pt(ι) that maximizes its profit.

Let Ṽt be the value of a firm that receives a positive signal in period t and
Vt(Pt−1(ι)) the value of a firm that receives a negative signal. As a firm that
receives a negative signal follows simply the ad hoc pricing rule (1.25), its
value at time t depends only on Pt−1(ι). For a firm that receives a positive
signal, its value at period t is

Ṽt = max
P

{
Πt

(
P
)

+ βEt
[

Λt+1

Λt

(
(1− ξp)Ṽt+1 + ξpVt+1

(
P
))]}

(1.26)

where Λt is the Lagrange multiplier of the budget constraint of the repre-
sentative household and PtΛt = λt. Let P ? be the optimal price chosen by
the firm that can re–optimize. The value of a firm that can’t re–optimize is

Vt
(
Pt−1(ι)

)
=Πt

(
ΓtPt−1(ι)

)
+βEt

[
Λt+1

Λt

(
(1− ξp)Ṽt+1 + ξpVt+1

(
ΓtPt−1(ι)

))] (1.27)

The first order condition and the envelope theorem give

Π′t
(
P ?
)

+ βξpEt
[

Λt+1

Λt
V ′t+1

(
P ?
)]

= 0 (1.28a)
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V ′t
(
Pt−1(ι)

)
Γt

= Π′t
(
ΓtPt−1(ι)

)
+ βξpEt

[
Λt+1

Λt
V ′t+1

(
ΓtPt−1(ι)

)]
(1.28b)

with the derivative of profit at P :

Π′t
(
P
)

= εy,t
1− θf (1 + ψf )

1 + ψf

(
P
Pt

)−(1+ψf )θf
Θ

(1+ψf )θf
t Yt

+θf

(
P
Pt

)−(1+ψf )θf−1
Θ

(1+ψf )θf
t mctYt +

ψf
1 + ψf

εy,tYt

(1.29)

Let’s write temporarily, in order to simplify notations, P, the price inherited
from the past. One can rewrite, one period ahead

V ′t+1

(
P
)

= Γt+1,tΠ
′
t+1

(
Γt+1,tP

)
+ βξpΓt+1,tEt+1

[
Λt+2

Λt+1
V ′t+2

(
Γt+1,tP

)]
Iterating toward the future and applying conditional expectation at time t,
one gets

Et
[
V ′t+1

(
P
)]

= Et

 ∞∑
j=0

(βξp)
jΓt+1+j,t

Λt+1+j

Λt+1
Π′t+1+j

(
Γt+1+j,tP

)
By substitution ( P = P ?) in the first order condition, one gets the following
condition for the price chosen by the firm that gets a positive signal:

Et

 ∞∑
j=0

(βξp)
jΓt+j,t

Λt+j
Λt

Π′t+j
(
Γt+j,tP

?
t

) = 0 (1.30)

One can get a more explicit expression for the price that satisfies equation
(1.30). Substituting in this equation the expression of marginal profit (1.29)
and dividing by P ?t

−(1+ψf )θf one gets:

P ?t
Pt

=
θf (1 + ψf )

θf (1 + ψf )− 1

Z1,t

Z2,t
+

ψf
θf (1 + ψf )− 1

(
P ?t
Pt

)1+(1+ψf )θf Z3,t

Z2,t
(1.31)

with

Z1,t = Et
∞∑
i=0

(βξp)
jλt+j

(
Γt+j
Pt+j/Pt

)−(1+ψf )θf
Θ

(1+ψf )θf
t+j mct+jYt+j (1.32a)

Z2,t = Et
∞∑
i=0

(βξp)
jλt+jεy,t+j

(
Γt+j
Pt+j/Pt

)1−(1+ψf )θf
Θ

(1+ψf )θf
t+j Yt+j (1.32b)

10



Z3,t = Et
∞∑
i=0

(βξp)
jλt+jεy,t+j

Γt+j
Pt+j/Pt

Yt+j (1.32c)

writing Pt+j/Pt, the inflation factor between t and t + j, can be written
equivalently Πj

i=1πt+i, and we can represent variables Z1,t, Z2,t et Z3,t in
recursive form:

Z1,t = λ̂tmctΘ
(1+ψf )θf
t Ŷt + βξpEt

( πt+1

π
γp
t−1π̄

1−γp
t

)(1+ψf )θf

Z1,t+1

 (1.33a)

Z2,t = λ̂tεy,tΘ
(1+ψf )θf
t Ŷt+βξpEt

( πt+1

π
γp
t−1π̄

1−γp
t

)(1+ψf )θf−1

Z2,t+1

 (1.33b)

Z3,t = λ̂tεy,tŶt + βξpEt

[(
π
γp
t−1π̄

1−γp
t

πt+1

)
Z3,t+1

]
(1.33c)

Writing ϑf,t ≡
∫ 1
0
Pt(ι)
Pt

dι can be written in recursive form:

ϑf,t = (1− ξp)
P ?t
Pt

+ ξp
π̄
1−γp
t π

γp
t−1

πt
ϑf,t−1 (1.34)

we can finally write the equation (1.20) equivalently as:

ψfϑf,t
1 + ψf

+
Θt

1 + ψf
= 1 (1.35)

In the end, inflation dynamics are characterized by equations (1.35), (1.34),
(1.31), (1.33a), (1.33b), (1.33c).

1.3 Labor

Homogeneous labor Lt =
∫ 1
0 Lt(h)dh provided by the households is differ-

entiated by a continuum of unions, ς ∈ [0, 1]. We have then Lt =
∫ 1
0 lt(ς)dς.

Unions sell differentiated labor, lt(ς), to an employment agency that aggre-
gate different types of labor to offer it as input to the firms of the inter-
mediary good sector. Unions have monopolistic power and the employment
agency operates in a perfectly competitive manner.
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1.3.1 Employment agency

It aggregates labor lt(ς) provided by unions with an aggregation function as
in Kimball (1996), defined implicitly by∫ 1

0
Gs

(
lt(ς)

Lt

)
dς = 1 (1.36)

where Gs, a strictly increasing concave function such that Gs(1) = 1, is de-
fined as Gf in section 1.2 (replacing θf by θs and ψf by θs). The employment
agency chooses the relative quantity of labor of type ς such as minimizing
the cost of production by unit of homogeneous labor, Wt(ς)

Wt

lt(ς)
Lt , under the

technological constraint (1.36). The first order condition associated to the
optimization program of the employment agency determines its demand of
differentiated labor1 ς:

lt(ς)

Lt
=

1

1 + ψs

[(
Wt(ς)/Wt

Υt

)−(1+ψs)θs
+ ψs

]
(1.37)

where Υt is the Lagrange multiplier associated with the technological con-
straint (1.36). Substituting (1.37) in the technological constraint, one gets
the following expression for the Lagrange multiplier

Υt =

(∫ 1

0

(
Wt(ς)

Wt

)1−θs(1+ψs)
dς

) 1
1−θs(1+ψs)

(1.38)

As the employment agency behaves in a competitive manner, its profit is
zero and we get the aggregate wage as

Wt =
ψs

1 + ψs

∫ 1

0
Wt(ς)dς +

1

1 + ψs

(∫ 1

0
Wt(ς)

1−(1+ψs)θsdς

) 1
1−(1+ψs)θs

(1.39)

1.3.2 Unions

Unions supply differentiated labor services from the homogeneous labor sup-
ply from the households. Unions have market power because of this differen-
tiation of labor services. We write the profit of a union offering wage Wt(ς)
and lt(ς) units of labor:

St (Wt(ς))) = (εl,tWt(ς)−Wm
t ) lt(ς)

1In order to save in notations, we don’t make a difference between the demand of the
employment agency and the supply by the unions.
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where log εl,t, is an exogenous shock on union’s gains. It is an AR(1) process
with zero mean. For a given demand, when εl,t = 1, the profit of the union
is given by the difference between the wage asked to the employment agency
and the wage paid to the household. By substitution in the demand function
of the employment agency (1.37):

St (Wt(ς))) = (εl,tWt(ς)−Wm
t )

Lt
1 + ψs

[(
Wt(ς)/Wt

Υt

)−(1+ψs)θs
+ ψs

]
(1.40)

Each union is subject to a Calvo lottery. In each period, a union can adjust
the wage Wt(ς) in an optimal manner with probability ξw. In this case, the
union chooses wage W ?

t that maximizes its profit knowing that in the future
it may not have the opportunity to readjust the wage for some periods.
When the lottery draw is negative for the union (with probability 1 − ξw),
it adjusts wages according to the following ad hoc rule:

Wt(ς) =
AT,t
AT,t−1

π̄γwt−1π
1−γw
t−1 Wt−1(ς) (1.41)

We write Ωt = (AT,t/AT,t−1) π̄
γw
t−1π

1−γw
t−1 ≡ Ωt,t−1 the growth factor of nominal

wage asked by the union ς at date t when this one doesn’t have the oppor-
tunity of revising it in an optimal manner. In this case, the union changes
the wage by indexing it on (i) a convex mix of the inflation target of the
monetary authority and of past inflation and (ii) the efficiency growth in
the intermediary goods sector. We write

Ωt+j,t =
AT,t+j
AT,t

(
j−1∏
h=0

π̄t+h

)γw (j−1∏
h=0

πt+h

)1−γw

= Ωt+1Ωt+2 . . .Ωt+j

the growth factor of the wage of a a union that gets negative signals during
the the next j periods (for j = 0, we have Ωt,t = 1, for j = 1, we have
Ωt+1,t = Ωt+1).

Let Ũt be the value of a union that receives a positive signal at date t and
Ut(Wt−1(ς)) the value of a union that receives the negative signal. In the
latter case, the union follows simply the ad hoc rule (1.41), this explains why
its value at date t depends upon Wt−1(ς). On the opposite, the optimization
program of a union that receives a positive signal is purely turn towards the
future. As unions have the same expectations about the future, they all
choose the same optimal wage (W ?

t ). More formally, the value at date t of
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a union that receives a positive signal is

Ũt = max
W

{
St

(
W
)

+ βEt
[

Λt+1

Λt

(
(1− ξw)Ũt+1 + ξwUt+1

(
W
))]}

(1.42)

where Λt is the Lagrange multiplier associated to the nominal budget con-
straint of the representative household.
The value of a union that receives a negative signal is

Ut
(
Wt−1(ς)

)
=St

(
ΓtWt−1(ς)

)
+βEt

[
Λt+1

Λt

(
(1− ξw)Ũt+1 + ξwUt+1

(
ΓtWt−1(ς)

))] (1.43)

The first order condition and the application of the envelop theorem give

S ′
t

(
W ?
t

)
+ βξwEt

[
Λt+1

Λt
U ′t+1

(
W ?
t

)]
= 0 (1.44a)

U ′t
(
Wt−1(ς)

)
Γt

= S ′
t

(
ΓtWt−1(ς)

)
+ βξpEt

[
Λt+1

Λt
U ′t+1

(
ΓtWt−1(ς)

)]
(1.44b)

with the derivative of the union profit at W :

S ′
t

(
W
)

= εl,t
1− θs(1 + ψs)

1 + ψs

(
W
Wt

)−(1+ψs)θs
Υ

(1+ψs)θs
t Lt

+θs

(
W
Wt

)−(1+ψs)θs−1
Υ

(1+ψs)θs
t

Wm
t

Wt
Lt +

ψs
1 + ψs

εl,tLt

(1.45)

Let’s write temporarily, in order to simplify notations,W, the price inherited
from the past. One can rewrite, one period ahead

U ′t+1

(
W
)

= Ωt+1,tS
′
t+1

(
Ωt+1,tW

)
+ βξpΩt+1,tEt+1

[
Λt+2

Λt+1
U ′t+2

(
Ωt+1,tW

)]
iterating toward the future and applying conditional expectation gives

Et
[
U ′t+1

(
W
)]

= Et

 ∞∑
j=0

(βξp)
jΩt+1+j,t

Λt+1+j

Λt+1
S ′
t+1+j

(
Ωt+1+j,tW

)
Substituting in the first order condition (pour W = W ?

t ), one gets the
following condition for an optimal wage choice by a union that receives a
positive signal:

Et

 ∞∑
j=0

(βξp)
jΩt+j,t

Λt+j
Λt

S ′
t+j

(
Ωt+j,tW

?
t

) = 0 (1.46)

14



The optimal wage W ?
t is the nominal wage that insures that the sum of

current and expected discounted marginal profits are zero when the union
can only revise nominal wages by using the ad hoc rule (1.41).

It is possible to obtain a recursive expression for multiplier Υt that appears in
the expression for a union profit. Equation (1.38) can be written equivalently
in the form

Υ
1−θs(1+ψs)
t =

∫ 1

0

(
Wt(ς)

Wt

)1−θs(1+ψs)
dς

The wage offered by the union at date t appears under the integral sign.
This price has been determined optimally j periods before with probability
(1− ξw)ξjw. We can then rewrite the integral as

Υ
1−θs(1+ψs)
t = (1− ξw)

∞∑
j=0

ξjw

(
Ωt,t−jW

?
t−j

Wt

)1−θs(1+ψs)

where W ?
t−j is the optimal wage at date t− j. Finally, one can interpret the

infinite sum as the solution of the following recursive equation:

Υ
1−θs(1+ψs)
t =(1− ξw)

(
W ?
t

Wt

)1−θs(1+ψs)

+ξw

(
Ωt,t−1
Wt/Wt−1

)1−θs(1+ψs)
Υ

1−θs(1+ψs)
t−1

(1.47)

One can get a more explicit expression for the wage that satisfies equation
(1.46). Substituting in this equation the expression for marginal profit (1.45)
and dividing by W ?

t
−(1+ψs)θs , one gets

w?t
wt

=
θs(1 + ψs)

θs(1 + ψs)− 1

H1,t

H2,t
+

ψs
θs(1 + ψs)− 1

(
w?t
wt

)1+(1+ψs)θs H3,t

H2,t
(1.48)

where w?t is the real wage obtained by the union at date t when it can adjust
the nominal wage in an optimal manner and wt the real nominal wage in
the economy, with

H1,t = Et
∞∑
j=0

(βξw)jλt+jw
m
t+j

(
Ωt+j

wt+j
wt

Pt+j
Pt

)−(1+ψs)θs
Υ

(1+ψs)θs
t+j Lt+j (1.49a)
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H2,t = Et
∞∑
j=0

(βξw)jλt+jεl,t+jwt+j×

(
Ωt+j

wt+j
wt

Pt+j
Pt

)1−(1+ψs)θs

Υ
(1+ψs)θs
t+j Lt+j

(1.49b)

H3,t = Et
∞∑
j=0

(βξw)jλt+jεl,t+jwt+j
Ωt+j

wt+j
wt

Pt+j
Pt

Lt+j (1.49c)

Noticing that wt+j/wt, the growth factor of the real wage between t and t+j,
can be equivalently written as Πj

i=1$t+i ($t is the growth factor of the real
wage between t and t− 1) and that we have

Ωt+j,t = (1 + g)j

(
j∏

h=1

Et+h

) 1
1−ρx

(
j−1∏
h=0

π̄t+h

)γw (j−1∏
h=0

πt+h

)1−γw

,

we can finally represent variables H1,t, H2,t and H3,t in the recursive form

H1,t = λtw
m
t LtΥ

(1+ψs)θs
t

+βξwEt


 $t+1πt+1

(1 + g)E
1

1−ρx
t+1 πγwt−1π̄

1−γw
t

(1+ψs)θs

H1,t+1

 (1.50a)

H2,t = λtεl,twtLtΥ
(1+ψs)θs
t

+βξwEt


 $t+1πt+1

(1 + g)E
1

1−ρx
t+1 πγwt−1π̄

1−γw
t

(1+ψs)θs−1

H2,t+1

 (1.50b)

H3,t = λtεl,twtLt

+βξwEt

(1 + g)E
1

1−ρx
t+1 πγwt−1π̄

1−γw
t

$t+1πt+1

H3,t+1

 (1.50c)

Noticing that ϑs,t ≡
∫ 1
0
Wt(ς)
Wt

dς can be written in the recursive form

ϑs,t = (1− ξw)
w?t
wt

+ ξw
(1 + g)E

1
1−ρx
t πγwt−1π̄

1−γw
t

$tπt
ϑs,t−1 (1.51)
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we can rewrite equation (1.39) as

ψsϑs,t
1 + ψs

+
Υt

1 + ψs
= 1 (1.52)

In the end, wage dynamics are characterized by equations (1.44), (1.51),
(1.47), (1.48), (1.50a), (1.50b), (1.50c).

1.4 Government and monetary authority

1.4.1 Fiscal policy

We assume that exogenous government expenditures Gt = gtYt are exactly
financed by lump sum taxes:

Tt = PtGt.

1.4.2 Central Bank

We assume that the behavior of the central bank is adequately described by
the following Taylor rule:

Rt = max

{
1, RρRt−1

[
R?
(
πt−1
π̄t

)rπ (Yt
Yt

)rY ]1−ρR
εR,t

}
(1.53)

where π̄t is the inflation target of the central bank, Yt is the reference out-
put level that would be attained by an economy without nominal rigidities,
log εR,t is an AR(1) stationary process with zero mean. The max function
constrains the nominal interest factor to be greater or equal than one. Equa-
tion (1.53) defines two regimes. In the first one, the nominal interest rate
is constant (equal to zero), whereas in the second one the nominal interest
rate reacts to excess inflation and output gap fluctuations. In the sequel,
we consider the case where the steady state of the economy is in the second
regime, ie the long run level of the nominal interest rate is assumed to be
strictly positive2. Nevertheless, during the transitions to this steady state
the economy can hit the Zero Lower Bound for the nominal interest rate.
Because of this constraint, the model is non differentiable everywhere.

2Note that we would not be able to solve and simulate this model if the steady state
is in the first regime. In this configuration, Blanchard and Kahn conditions would be
(locally) violated.
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1.5 General equilibrium

1.5.1 Price distortion

Prices in the intermediary good sector are heterogeneous. However, it is
possible to show that this heterogeneity doesn’t hinder aggregation. We
know that the firms of this sector choose all the same mix of factor of
production in the sense that the ratio of capital demand to labor demand is
constant across firms (see equation 1.23). Expressing labor demand of firm ι
as a function of its demand of physical capital, we can write the production
of this firm

yt(ι) =

(
AtL

d
t

Kd
t

)1−α

Kd
t (ι)

When Kd
t ≡

∫ 1
0 K

d
t (ι)dι is aggregate demand for physical capital and yt ≡∫ 1

0 Yt(ι)dι represents the sum of intermediary productions, we can write
directly

yt =
(
Kd
t

)α (
AtL

d
t

)1−α
The sum of intermediary productions is different from Yt, because aggre-
gation technology isn’t linear. Integrating the demand function for good ι
from the final good producers (1.18) over ι, we get

yt = ∆p,tYt (1.54)

with

∆p,t ≡
1

1 + ψf

∫ 1

0

((
Pt(ι)/Pt

Θt

)−(1+ψf )θf
+ ψf

)
dι (1.55)

Price distortion can be written recursively in the following manner:

∆p,t =
1

1 + ψf
Θ

(1+ψf )θf
t ∇p,t +

ψf
1 + ψf

(1.56a)

∇p,t = (1− ξp)
(
P ?t
Pt

)−(1+ψf )θf
+ ξp

(
π̄
γp
t π

1−γp
t−1
πt

)−(1+ψf )θf
∇p,t−1 (1.56b)

where the Lagrange multiplier Θt is defined recursively as well. Then, we
have

∆p,tYt =
(
Kd
t

)α (
AtL

d
t

)1−α
(1.57)
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1.5.2 Wage distortion

Here, we show how to link aggregate labor supply by the households with
aggregated labor supply by the employment agency to the firms of the in-
termediary good sector This link is affected by the heterogeneity of wages
induced by their nominal rigidity. Integrating labor demand for type ς by
the employment agency (1.37) over ς, we find directly

Lt = ∆w,tLt (1.58)

with

∆w,t ≡
1

1 + ψs

∫ 1

0

((
Wt(ς)/Wt

Υt

)−(1+ψs)θs
+ ψs

)
dς (1.59)

Wage distortion can be written in recursive form:

∆w,t =
1

1 + ψs
Υ

(1+ψs)θs
t ∇w,t +

ψs
1 + ψs

(1.60a)

∇w,t =(1− ξw)

(
w?t
wt

)−(1+ψs)θs

+ξs

(1 + g)E
1

1−ρx
t π̄γwt π1−γwt−1
$tπt

−(1+ψs)θs ∇w,t−1 (1.60b)

where the Lagrange multiplier Υt is defined recursively in equation (1.47).

1.5.3 Dividends paid by intermediary good firms

Firms in the intermediary good sector interact in monopolistic competition
and make profits that are paid to households in the form of dividends. The
sum of nominal profits at date t is

Πt =

∫ 1

0
Πt(ι)dι

= Pt

(
εy,tYt − rktKd

t − wtLdt
)

As households own the firms, the profits are paid to them. The repartition of
these profits between the households in undetermined in general equilibrium,
but we know that∫ 1

0
D1,t(h)dh = Pt

(
εy,tYt − rktKd

t − wtLdt
)

(1.61)
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1.5.4 Dividends paid by the unions

In the same way, we can compute aggregate nominal profit of the unions at
date t. These profits as well are paid to the households. We have

St =

∫ 1

0
St(ς)dς

= εl,tWtLt −Wm
t Lt

and, then, ∫ 1

0
D2,t(h)dh = εl,tWtLt −Wm

t Lt (1.62)

1.5.5 Equilibrium in factor markets and in bond markets

In general equilibrium, labor supply form the employment agency equals
aggregate labor demand by firms of the intermediary good market. In the
same way, aggregate supply of physical capital by the households equals
aggregate demand from these firms. In formal terms,

Lt ≡ ∆−1w,t

∫ 1

0
Lt(h)dh =

∫ 1

0
Ldt (ι)dι ≡ Ldt (1.63)

K̃t ≡
∫ 1

0
zt(h)Kt−1(h)dh =

∫ 1

0
Kd
t (ι)dι ≡ Kd

t (1.64)

Finally, aggregate demand for bonds must be zero, as we assume a close
economy and no government debt.∫ 1

0
Bt(h)dh = 0 (1.65)

1.5.6 Equilibrium on the good market

By summing the budget constraints of the households (1.2) over h ∈ [0, 1]
and by substituting the equilibrium conditions on the bond market, the def-
inition of aggregate dividends and the budget constraint of the government,
we get

PtGt + PtCt + pI,tPtIt = Wm
t Lt + Ptr

K
t ztKt−1 + Pt

(
εy,tYt − rktKd

t − wtLdt
)

+ εltWtLt −Wm
t Lt
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After simplification and knowing that the factor markets are in equilibrium,
we obtain

Gt + Ct + pI,tIt = εy,tYt + (εl,t − 1)wtLt (1.66a)

or equivalently

Gt + Ct + pI,tIt = εy,t∆
−1
p,t yt + (εl,t − 1) ∆−1w,twtLt (1.66b)

2 Extended path

Due to the max function appearing in the Taylor rule, the model is not dif-
ferentiable everywhere. Consequently, a perturbation approach cannot be
considered for solving the model. The reason is that, even if we forget that
the Taylor approximation does not apply in this case, by approximating the
model around the deterministic steady state the ZLB (or more generally
any occasionally binding constraint) would not affect the expectations of
the agents.

Our model can generically be represented as

Et [F (yt+1, yt, yt−1, εt)] = 0 ∀t (2.1)

where y is a vector of endogenous variables, ε is a vector of structural innova-
tions (a Gaussian multivariate white noise), Et is the conditional expectation
operator and F is a non linear function. The standard (numerical or ana-
lytical) solution approach is to look for an expression for the decision and
transition rules:

yt = G (yt−1, εt)

where the invariant reduced form G satisfies:

Et [F (G (G (yt−1, εt), εt+1),G (yt−1, εt), yt−1, εt)] = 0 ∀t

If there is no closed form solution, the function G must be locally (around
the deterministic steady state) or globally (over an arbitrary domain for the
states variables) approximated. Unfortunately, because of the size of our
model a global approximation cannot be considered here.

The extended path approach indirectly characterizes the decision and tran-
sition rules G by generating time-series that satisfy the model equations.
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Basically, the trick is to move the conditional expectation under function
F , that is to replace (2.1) by

F (Et [yt+1] , yt, yt−1, εt) = 0 ∀t (2.2)

This is obviously not the same model if the function F is nonlinear, be-
cause of the Jensen inequality. The main approximation of the EP method
lies here. The magnitude of the errors induced by this approximation will
depend on the degree of nonlinearity in the forward terms appearing in the
original model. Gagnon (1990) and Love (2009), considering a stochastic
growth model, show that the approximation error is reasonable and that
the EP approach performs as well (or even better) as a global approxima-
tion approach (Galerkin). The advantage of the EP approach over global
approximation being that it can solve medium or large scaled models (which
is not possible with global approximation methods due to the so called curse
of dimensionality). Technically, the EP method will generate time series for
the endogenous variables by calling recursively a perfect foresight model
solver (for (2.2)). The algorithm is described in the sequel.

Given initial conditions for the states (y0), terminal conditions for the jump-
ing variables (yN+1 = y?) and a sequence of expected innovations, one can
solve a perfect foresight model by solving the following system of non linear
equations:

F (y2, y1, y0, ε1) = 0

F (y3, y2, y1, ε2) = 0

F (y4, y3, y1, ε3) = 0

...

F (yN+1, yN , yN−1, εN ) = 0

for the equilibrium path {y1, y2, . . . , yN}. This system of nonlinear equa-
tions is solved with a Newton algorithm, taking care of the sparsity of the
Jacobian. The sole approximation here concerns the terminal condition: we
assume that the endogenous variables reach the steady state at time N + 1,
while this result is only asymptotic. This size of this approximation can be
tailored by evaluating the sensitivity of the solution with respect to the value
of the horizon, N . Alternatively, if the steady state of the model is unknown,
we could replace the terminal condition by yN+1 = yN . In practice, we may
have to set N equal to several hundreds, in order to obtain a the reasonable
size for the approximation errors. This explains the computational burden
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of this approach (the size of the non linear system of equations to solve
grows linearly with N).

We now restrict our attention to the following dynamic problem (at time t):

F (yt+j+1, yt+j , yt+j−1, εt+j) = 0 ∀j = 0, 1, . . . , N

with no shocks in the future, εj = 0 for all j > 0. The solution of the
corresponding system of non linear equations:

F (yt+1, yt, yt−1, εt) = 0

F (yt+2, yt+1, yt, 0) = 0

...

F (yt+N+1, yt+N , yt+N−1, 0) = 0

will be denoted:

Yt,N ≡ {yt, . . . , yt+N} ≡ QN,t(yt−1, εt)

Finally, we further restrict our attention by selecting only the first term of
the solution for the equilibrium path :

yt = RN,t(yt−1, εt)

Note that the mapping between the endogenous variables at time t with the
initial condition (endogenous variables at time t− 1) and the time t innova-
tions (εt) is not state invariant. If the initial states or the innovations are
changed, we have to solve again the perfect foresight model to obtain yt.

To simulate a time series of T observations we iterate over RN,t(yt−1, εt).
Given an initial conditions for the states and a sequence of unexpected
innovations, we have:

y1 = HN,1(y0, ε1)

y2 = HN,2(y1, ε2)

...

yT = HN,T (yT−1, εT )

The simulation of a time series with T observations requires the solutions to
T perfect foresight models. Obviously, this simulation approach is far more
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time consuming than the perturbation (first or second order approximation)
approach or the global approach (for small models). In order to reduce the
computational burden of this solution method we did not use the traditional
terminal condition. Knowing that the approximation error associated to the
paths generated by the first order approximation of G are arbitrarily small in
the vicinity of the steady state, we replaced the terminal condition yN+1 =

y? by yN+1 = y
(1)
N+1, where y

(1)
N+1 is the attained level of the endogenous

variables at time N + 1 when we iterate on the first order approximation
of G . Using this alternative terminal condition allows us to significantly
reduce the value of N . In the same spirit, we also considered the terminal
condition yN+1 = ∂G

∂y′N
(y?)yN , but our experiments showed that this strategy

was generally slower, due to the propagation of the round off errors.

3 Simulated Method of Moments

3.1 Intuition and notations

The basic idea is to find the parameters of the model such that the distance
between simulated moments (mean, variance, covariance, auto-covariance,
skewness, kurtosis, ...) and sample moments is minimized. It can be proved
that this estimator provides consistent estimates of the parameters (see chap-
ter 2 in Gourieroux and Monfort (1996)).

Let Y ?
T ≡ {y?1, y?2, . . . , y?T } be the sample and Y

(s)
T (θ) ≡ {y(s)1 (θ), y

(s)
2 (θ), . . . ,

y
(s)
T (θ)} be a simulated sample, obtained with the extended path method

described in the previous section, for a vector of (estimated) parameters θ.

Let H (Y?T ) and H (Y(s)
T (θ)) be n× 1 vectors of sample and simulated mo-

ments, with n > m. Some of the matched moments may require more
than one observation to be computed. For instance, if we want to match
an order p auto-covariance function, we need to consider p consecutive val-
ues of the observed variables. To this end, we define vectors gathering p
consecutive sample or simulated variables, z?t ≡ (y?t , y

?
t−1, . . . , y

?
t−p+1) and

z
(s)
t (θ) ≡ (y

(s)
t (θ), y

(s)
t−1(θ), . . . , y

(s)
t−p+1(θ)). The sample moments are defined

as follows3

H (Y?T ) = T−1
T∑
t=1

h(zt)

3Assuming y0, y−1, ..., y−p+1 exist.
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the same definition applies for the simulated moments. The continuous func-
tion h : Rnp −→ Rm defines the set of moments to be matched, E[h(z)].
For instance, in the univariate case (m = n = 1), if the we want to match
the first order auto-covariance we have h(zt) = (yt− ȳ)(yt−1− ȳ) where ȳ is
the arithmetic mean of y.

Finally we define the n× 1 moment vector

gT (θ) =
1

T

T∑
t=1

h(z?t )− 1

ST

S∑
s=1

T∑
t=1

h(z
(s)
t (θ))

where S is the number of simulated samples. Note that the seed of the
random number routines used to generate simulated samples must be kept
constant when the moment vector is evaluated for different values of the
vector of parameters θ. We will denote G(θ) the n × m Jacobian matrix
associated to the moment vector:

G(θ) =
∂g

∂θ′
(θ)

3.2 The simulated moments estimator

The simulated moments estimator of θ is defined as:

θ̂T (W ) = arg min
θ

gT (θ)′WgT (θ) (3.1)

where W is a symmetric positive definite weighting matrix. It can be shown
that this estimator is Op(T−1/2) and that its asymptotic variance is given
by:

V∞
[√

T θ̂T (W )
]

= κ(S)
(
G′0WG0

)−1
G′0WΩWG0

(
G′0WG0

)−1
(3.2)

where

κ(S) =

(
1 +

1

S

)
is a scale factor monotonically decreasing with the number of simulated
samples used to evaluate the moment vector,

G0 = G(θ0)

is the Jacobian matrix of the moment vector evaluated at the true value θ0,
and Ω is the long run covariance matrix of the vector of moments:

Ω = lim
T→∞

E

(T− 1
2

T∑
t=1

h(zt)

)(
T−

1
2

T∑
t=1

h(zt)

)′
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3.3 Weighting matrix

Conditionally on a weighting matrix W , the variance of θ̂T is given by (3.2).
It can be shown that this variance is minimized when the weighting matrix
is the inverse of the long run variance of the sample moments. This long
run covariance matrix is estimated as follows

Ω̂ = Γ̂0 +

p∑
j=1

(
1− j

p+ 1

)(
Γ̂j + Γ̂′j

)
where the bandwidth parameter p is O(T 1/4) and the lag j estimated auto-
covariance is given by:

Γ̂j =
1

T

T∑
t=j+1

(
H (zt)−H (z)

)(
H (zt)−H (z)

)′
Provided Ω̂ is used as a weighting matrix, the asymptotic behavior of the
SMM estimator is given by:

√
T
(
θ̂T − θ0

)
=⇒
T→∞

N
(

0, κ(S)G′0Ω̂G0

)
where the gradient of the moment function evaluated at the true vector of
parameters, G0, may be replaced by G(θ̂).

4 Estimation results

As a first attempt we consider a simplified version of the model. First, we
remove all the shocks except the stationary productivity shock, the risk pre-
mium shock and the investment efficiency shock. Second we only estimate
the parameters related to these three shocks (autoregressive parameters and
standard deviations of the innovations). The other parameters are calibrated
at the posterior mean obtained in Adjemian and Juillard (2009), see table 1.

The model is estimated with quarterly data on the period 1994–2008 (3rd
quarter). We use the following observed variables: GDP, private consump-
tion expenditures, private investment (sum of private growth capital forma-
tion in residential buildings and in plant and equipment), con- sumer price
index. For the short term nominal interest rate we use the Bank of Japan
target rate of unsecured overnight call rate.
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The parameters are estimated using the following moment conditions: (i)
Mean of all the observed variables except growth of real wages, (ii) Vari-
ance of all the observed variables, (iii) First order auto-covariances for all
the observed variables, (iv) Skewness of the growth rate of output and the
inflation factor and (v) Kurtosis of the growth rate of output and the infla-
tion factor. We do not use third and fourth order moments on the nominal
interest factor because we want to test the ability of this model to hit the
ZLB.

The estimation for the autoregressive parameters and innovation standard
deviations are as follows:

ρA 0.9982
ρB 0.4912
ρI 0.6289
σA 0.0013
σB 0.0017
σI 0.0001

The estimated values are sensibly different from the values reported in Ad-
jemian and Juillard (2009). By simulating a long time series (10000 periods)
we find that the probability of hitting the ZLB is around 24%. But the
probability of staying on the ZLB five quarters is around 0.15%, and the
probability of being on the ZLB for a couple of years is zero. This is clearly
at odds with the data. In this model, the economy is driven on the ZLB by
the risk premium shock, which (partially) accounts for financial imperfec-
tions. In order to simulate paths with long periods on the ZLB, we would
need much larger (positive) risk premium shocks. Another solution would
be to abandon the Gaussian assumption and allow the distribution of the
risk premium shock to be asymmetric. The risk premium shock should then
be more often positive than negative, reflecting the long period of financial
troubles in the Japanese economy.

Our results need to be checked by (i) enlarging the set of estimated param-
eters, and (ii) trying other moment conditions. We also need to evaluate
the robustness of our simulation strategy by comparing the EP approach to
a more conventional global approximation approach (finite elements) on a
smaller model admitting the same kind of non linearities.
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Parameter name Value
σc 0.8514
σl 1.7180
η 0.1836
ξp 0.4056
ξw 0.7840
ψf -4.8380
ψs -5.5056
θf 6.1786
θs 5.9342
α 0.3030
γp 0.2079
γw 0.2757
ρR 0.5807
rπ 1.4290
ry 1.7418
g 0.0031
ψ 0.2361
z̄ 0.8012

Table 1: Calibration of the parameters.
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