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Abstract. In this paper we evaluate the accuracy of the Extended Path approach for solving
DSGE models with occasionally binding constraints. We consider a New Keynesian model with
Calvo price setting, an aggregation technology of intermediary goods à la Kimball, to control
for the degree of nonlinearity in the model, and a Zero Lower Bound on the nominal interest
rate. Accuracy errors show to be quite reasonable but deteriorates signi�cantly when the ZLB
is binding.

1. Introduction

The aim of this paper is to evaluate the accuracy of the extended path approach when solving a
non linear model with occasionally binding constraints.

In a previous contribution, i.e. Adjemian and Juillard (2010), we showed that using the extended
path method, �rst proposed by Fair and Taylor (1983), it was indeed possible to estimate, by
the Simulated Method of Moments, a DSGE model including a zero lower bound for the nominal
interest rate (or more generally a DSGE model including occasionally binding constraints) .

The extended path approach relies on a perfect foresight solver to take full account of the non�
linearities introduced by the occasionally binding constraints. For each period of the sample,
exogenous innovations are treated as surprise shocks in the period of a deterministic simulation
where shocks are set to their expected value of zero, in all future periods. This approach neglects
Jensen inequality, but we considered that it was a minor drawback in comparison with the correct
treatment of the non�linearities induced by the zero lower bound.

Very few studies, e.g. Gagnon (1990) and Love (2009), evaluate the accuracy of this simulation
method. These authors, considering a stochastic growth model, show that the approximation
errors are reasonable and that the extended path approach performs as well (or even better) as
a global approximation approach. However the degree of non linearity of the stochastic growth
model with a Cobb-Douglas technology is relatively weak (for credible values of the deep pa-
rameters), so that one may think that their results are not fully convincing. Intuition suggests
that the magnitude of the errors induced by neglecting the Jensen inequality will depend on the
degree of nonlinearity in the forward terms appearing in the original model.

We propose to build a New-Keynesian model with Calvo (1983) nominal rigidity on prices,
Kimball (1996) aggregation function of intermediate goods and a zero lower bound on nominal
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interest rates. Considering this model we will evaluate the accuracy of the extended path ap-
proach, controlling the degree of non linearity with the deep parameter associated to the Kimball
(1996) aggregation function1. As the true decision rules are unknown with the extended path
method, it is not possible to evaluate approximations errors directly as in, for instance, Juillard
and Villemot (2010). It is however possible to compute residuals of the original equations of
the model in which we plug the solution paths from the extended path method. These residuals
deliver an estimation of the error of approximation. We compute such approximation errors for
state points on an hyper-sphere centered on the deterministic steady state and along simulated
paths.

In section 2 we present the New-Keynesian model considered to evaluate the accuracy of the
extended path approach. The simulation method is presented in section 3 and the accuracy
checks are introduced in section 4. Section 5 reports the results and concludes.

2. Description of the model

In order to keep the model as simple as possible, we consider an economy without capital accu-
mulation and the unique imperfection is related to the production sector.

2.1. Households. We consider an economy populated by a continuum of in�nitely living iden-
tical households. Each household values the consumption of an homogeneous good and leisure.
The inter-temporal utility function of the representative household is given by:

(H1) Wt = U (Ct, ht) + βEt [Wt+1]

with

(H2) U (Ct, ht) =
C1−σC
t

1− σC
− ξh

h1+η
t

1 + η

where Ct is the level of consumption at time t, ht is the supply of labor (hours), β ∈ [0, 1] is
the discount factor, σC > 0 is the intertemporal elasticity of consumption and η > 0 the Frisch
elasticity of labor.

The budget constraint of the representative household, in period t, is the following:

(H3) PtCt +
Bdt

εB,tRt
= Bdt−1 +Wtht + Dt + Tt

where Pt is the aggregate price index; Rt = 1+it, corresponds to the rate of interest plus one; B
d
t

the nominal value of bonds detained at the end of period t; εB,t is the risk premium requested by
households in order to detain the bond, εB,t is an exogenous stochastic process with asymptotic
expectation equal to one; Wt is the hourly wage rate received in period t; Tt represents net
transfers received by the household during the period; Dt(h) are the nominal dividends received
from �rms in the intermediate good sector.

The representative household chooses its consumption, labor supply, bond holdings so as to max-
imize its inter-temporal utility (H1)-(H2) under the budget constraint (H3), taking as given the
distribution of prices and exogenous variables.

1We could also control the degree of nonlinearity by varying the inter-temporal elasticity of substitution of the
representative household. But it is very likely that such variations would not a�ect the accuracy because there is
no capital accumulation in this model.
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2.2. Production.

2.2.1. Final good. The �nal good, used for private consumption, is obtained by aggregating a
continuum of intermediate goods z ∈ [0, 1] in a perfectly competitive sector. The representative
�rm use a constant return to scale technology à la Kimball (1996):

(FGS1)

∫ 1

0

G

(
Yt(z)

Yt

)
dz = 1

where G is a strictly increasing concave function such that G (1) = 1. We follow Dotsey and
King (2005) or Levin et al. (2007) and adopt the following functional form for this aggregation
function:

(FGS2) G (x) =
φ

1 + ψ
[(1 + ψ)x− ψ]

1
φ −

[
φ

1 + ψ
− 1

]
where φ = ε(1+ψ)

ε(1+ψ)−1 , ψ ≤ 0 and ε > 0. This technology of aggregation is a generalization of the

well known Dixit and Stiglitz (1977) CES aggregation technology, one can check that (FGS1)
and (FGS2) reduces to the standard Dixit and Stiglitz (1977) aggregation function when ψ = 0.
This parameter controls for the curvature of the demand function, the more ψ is negative the
more kinked is the demand function (see Levin et al. (2007)).

Given relative prices, the representative �rm maximizes its pro�t subject to the technological
constraint (FGS1) and (FGS2):

max
{Yt(z);z∈[0,1]}

Yt −
∫ 1

0

Pt(z)

Pt
Yt(z)dz

sc (FGS1)− (FGS2)

(FGS3)

the solution of this program de�nes the demand for each intermediate good as a function of
relative prices, and the zero pro�t condition de�nes the aggregate price Pt.

2.2.2. Intermediary goods. There is a continuum of intermediate goods indexed by z ∈ [0, 1].
Each good z is produced by a unique �rm z using labor. The production technology is linear in
the labor input. That is:

(IGS1) Yt(z) = Atlt(z)

Yt(z) is the amount of good produced by �rm z, lt(z) is the amount hours used in the production
process and At is an exogenous stochastic process with asymptotic mean equal to A?.

It can be shown that the marginal cost is invariant in the cross section of �rms, we denote
mct = wt/At the real marginal cost. The nominal pro�t of an intermediate �rm that o�ers price
P at date t is given by:

Πt(P) =

(
P
Pt
−mct

)
PtYt(z)

Due to the monopolistic competition between �rms producing imperfectly substitutable interme-
diate goods, each �rm z has market power. Nevertheless, a �rm can't decide of its optimal price
in each period. Following a Calvo (1983) scheme, at each date, the �rm receives a signal telling
it whether it can revise its price Pt(z) in an optimal manner or not. There is a probability ν that
the �rm can't revise its price in a given period. In such a case, the �rm follows the following
rule:

Pt(z) = π?Pt−1(z)
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where π? is the in�ation target of the monetary authorities. When a �rm z receives a positive
signal (with probability 1− ν), it chooses price Pt(z) that maximizes its pro�t knowing that in
the next periods she may not be able to choose optimally its price.

2.3. Government and monetary authority. The government issues lump sum monetary
transfers, Tt, to the households and bounds. The government budget constraint is given by:

Bst
εB,tRt

−Bst−1 − Tt = 0

where Rt is the nominal interest factor set by the monetary authorities.

It is assumed that a central bank controls the nominal interest rate according to the following
rule:

Rt = max
{

1, R?
( πt
π?

)rπ}
where π? is the in�ation target of the central bank. The max function constrains the nominal
interest factor to be greater or equal than one. This equation de�nes two regimes. In the �rst
one, the nominal interest rate is constant (equal to zero), whereas in the second one the nominal
interest rate reacts to the current excess in�ation. In the sequel, we consider the case where
the steady state of the economy is in the second regime, ie the long run level of the nominal
interest rate is assumed to be strictly positive. Nevertheless, during the transitions to this steady
state the economy can hit the Zero Lower Bound for the nominal interest rate. Note that we
omit the traditional output gap variable and the lagged interest rate. Also, the nominal interest
rate depends on the current in�ation in deviation to the target and not the lagged in�ation in
deviation to the target (as in Smets and Wouters (2007)). Adopting a more traditional Taylor
rule would add two state variables (lagged in�ation and interest factor) without any additional
advantage with respect to our problem.

2.4. Equilibrium.

2.4.1. Price distortion. Prices in the intermediary good sector are heterogeneous. However, this
heterogeneity doesn't hinder aggregation because the technology in the sector of intermediary

goods is linear. De�ning lt =
∫ 1

0
lt(z)dz as the aggregate demand for labor and Yt =

∫ 1

0
Yt(z)dz

the sum of intermediary productions, we have directly:

Yt = Atlt

Because the aggregation technology (FGS1)- (FGS2) is not linear, the sum of intermediary
productions is di�erent from Yt, the demand of �nal good. Integrating the demand function for
good z from the �nal good producer, ie the solution of (FGS3), over z, we get:

Yt = ∆tYt

with the distortion ∆t is de�ned as:

∆t ≡
1

1 + ψ

∫ 1

0

((
Pt(z)/Pt

Σt

)−(1+ψ)ε

+ ψ

)
dz

where Σt is the Lagrange multiplier associated to the program (FGS3) of the representative �nal
good producer.
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2.4.2. Dividends paid by intermediary good �rms. Firms in the intermediary good sector interact
in monopolistic competition and make pro�ts that are paid to households in the form of dividends.
The sum of nominal pro�ts at date t is

Πt =

∫ 1

0

Πt(z)dz =

∫ 1

0

(
Pt(z)

Pt
−mct

)
PtYt(z) = Pt (Yt − wtlt)

As households own the �rms, the pro�ts are paid to them. The repartition of these pro�ts
between the households is undetermined in general equilibrium, but we know that

(IGS2)

∫ 1

0

D1,t(h)dh = Pt (Yt − wtlt)

2.4.3. Equilibrium in labor and bond markets. In general equilibrium, labor supply from the
representative household equals aggregate labor demand by �rms of the intermediary good market
and the demand and supply of bonds are equal:

ht = lt, Bdt = Bst

2.4.4. Equilibrium on the �nal good market. By substituting the equilibrium condition on the
bond market, the de�nition of aggregate dividends and the budget constraint of the government
in the budget constraint of the representative household, we get:

PtCt = Wtht + Pt (Yt − wtlt)
Knowing that the labor market is in equilibrium, we obtain:

Ct = Yt = ∆−1
t Yt

2.5. Equations of the model. The evolution of the endogenous variables satis�es the following
set of stochastic di�erence equations:

(1)

At = A?e
at− 1

2

σ2a
1−ρ2a

at = ρaat−1 + ua,t

(2)

εB,t = e
bt− 1

2

σ2b
1−ρ2

b

bt = ρbbt−1 + ub,t

(3) λt = C−σct

(4) ξhh
η
t + λtwt = 0

(5) βεB,tEtE1,t+1 −
λt
Rt

= 0

(6) −Z1,t +
wt
At

Θ−φt Yt + νβ
EtE2,t+1

λt
= 0

(7) −Z2,t + Θ−φt Yt + νβ
EtE3,t+1

λt
= 0

(8) −Z3,t + Yt + νβ
EtE4,t+1

λt
= 0

(9)
Z2,t

(1 + ψ)(1− φ)
p

φ
1−φ
t + Z3,t

ψ

1 + ψ
+ Z1,t

φ

(1 + ψ)(φ− 1)
p

φ
1−φ−1

t = 0
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(10) −Θt + (1− ν)p
1

1−φ
t + ν

(
π?

πt

) 1
1−φ

Θt−1 = 0

(11) −
(

(1 + ψ)−Θ1−φ
t

)
+ (1− ν)ψpt + ν

π?

πt

(
1 + ψ −Θ1−φ

t−1

)
= 0

(12) −∆t + (1− ν)p
φ

1−φ
t + ν

(
π?

πt

) φ
1−φ

∆t−1 = 0

(13)
Θ−φt ∆t + ψ

1 + ψ
Yt −Atht = 0

(14) − Yt + Ct = 0

(15) Rt −max
{

1, R?
( πt
π?

)rπ}
= 0

(16) E1,t −
λt
πt

= 0

(17) E2,t − λt
(
π?

πt

) φ
1−φ

Z1,t = 0

(18) E3,t − λt
(
π?

πt

) 1
1−φ

Z2,t = 0

(19) E4,t − λt
π?

πt
Z3,t = 0

where Et[X ] = Et[X |Ωt] is the expectation of X conditional on the information at time t,
Ωt. The information available to the agents at time t is the present and past realizations of the
variables, Ωt = {(sτ , uτ , yτ−1, xτ−1,Eτ );∀τ ≤ t}2. Equations (1)-(2) de�ne the law of motion of
the exogenous stochastic processes, the productivity and risk premium shocks. By construction,
these equations are such that the ergodic expectations of the exogenous variables are respectively
A? and 1. Equation (3) de�nes the Lagrange multiplier associated to the budget constraint of
the representative household (H3) as the marginal utility of consumption. Equation (4) de�nes
the optimal trade-o� between consumption and leisure. Equations (5) and (16) form the Euler
equation associated to the demand of bonds from the representative household. Equations (6) to
(12) are derived from the �nal and intermediate sector �rms optimal behavior and characterizes
the dynamic of in�ation (see appendix A). Equation (13) relates the aggregate demand with
the aggregate supply, equation (14) is the resource constraint. Equation (14) is the Taylor rule.
Finally, equations (16) to (19) de�ne four auxiliary variables, the non linear combinations of
endogenous variables appearing as expected terms in the previous equations.

2Although, this is not transparent in our notation, the information set also includes the model and its parameters,
the agents in the model know the data generating process.
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3. Extended path approach

The previous model, described by equations (1) to (19), may be represented more generally as
follows:

(20a) st = Q(st−1, ut)

(20b) Et [F(yt, xt, xt−1, st,Et+1)] = 0

(20c) G(yt, xt, xt−1, st) = 0

(20d) Et = H(yt, xt−1, st)

where st is a ns×1 vector of exogenous variables (productivity and risk premium), the innovation
ut is a multivariate random variable in Rns with expectation 0 and variance Σu (the cumulative
distribution function of u is denoted P(u)), xt is a nx × 1 vector of endogenous state variables
(the distortion related to price rigidity, ∆t, and the Lagrange multiplier associated to aggregation
technology in the �nal good sector, Θt), yt is a ny × 1 vector of non predetermined variables
(Ct,λt, wt, πt, Rt, Z1,t, Z2,t, Z3,t, Yt, pt and ht) and Et is a nE × 1 vector of auxiliary variables.
Q, F, G and H are non linear continuous functions (not necessarily di�erentiable everywhere)
respectively representing equations (1)-(2), equations (5) to (8), equations (3)-(4) and (9) to (15)
and equations (16) to (19).

3.1. EP algorithm. The extended path algorithm (EP hereafter) is a simulation approach for
generating time series for the endogenous variables {yt, xt}Tt=1 given an initial condition for the
state variables, (s0, x0), and a sequence of innovations {ut}Tt=1. The extended path approach
indirectly characterizes the decision rules (ie the functions relating the non predetermined vari-
ables, yt, with the state variables, xt−1 and st) by generating time-series for the endogenous
variables. Basically, the trick is to extend the information set at date t in the following way:

Ω̃t = Ωt ∪ {uτ = 0;∀τ > t}

Given the state of the economy at date t, (xt−1, st), we can then solve (20)3 for yt by solving a
perfect foresight model (as described in La�argue (1990)). Here is a sketch of the algorithm:

Algorithm 1 Extended path algorithm

1. H ← Set the horizon of the perfect foresight models.
2. (x0, s1)← Choose an initial condition for the state variables.
3. for t = 1 to T do
4. (yt, zt)← Solve a perfect foresight model with terminal condition yt+H = y?.
5. v ← Draw independent uniform variates (ns × 1).
6. u← P−1(v)
7. st+1 ← Q(st, u)
8. end for

The main approximation here is that we assume that the agents believe that the innovations of
the exogenous states will be zero in the future. There is no uncertainty about the future.

3With expectations conditional on Ω̃t and not Ωt.
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3.2. Remarks. The main advantage of this approach is that we can simulate large models with
an arbitrary precision, because the number of needed operations increases polynomially with the
number of endogenous variables (the main task when solving the perfect foresight model consist
in inverting a sparse matrix) and not exponentially (as it would with a global approximation
of the policy rules). The extended path approach does not su�er from the so called curse of
dimensionality. A second advantage is that the EP approach does not require any special treat-
ment when the model admit occasionally binding constraints, because it does not impose the
di�erentiability of F or G.

Obviously these advantages come at a cost: with the EP approach we abstract from the e�ects
of uncertainty on the behavior of the agents. However, two points are worth noting. First, large
scaled models are usually solved considering a �rst order Taylor approximation of Q, F, G and
H in (20). If we linearize the model, we will also neglect the e�ects of uncertainty about the
future and we will not be able to treat the occasionally binding constraints. In this respect
the EP approach dominates the �rst order perturbation approach. We could instead consider
a k-order perturbation approach. If k is greater than one, the certainty equivalence property is
not satis�ed and uncertainty about the future has an impact on agents decisions. Nevertheless,
because this approach requires the di�erentiability everywhere of the model, we would not be
able to treat correctly occasionally binding constraints. Second, if we agree with Lucas (1987,
2003) that the cost of �uctuations is very small, it is most likely that the error of approximation

induced by the substitution of Ωt by Ω̃t is small.

3.3. Numerical illustration. We illustrate the EP method by comparing di�erent simulated
paths obtained with di�erent approaches: EP, �rst and second (with or without pruning) order
perturbations. The calibration of the deep parameters is described in table 1. We simulate
the model, as de�ned by equations (1) to (19), considering the deterministic steady state as an
initial condition and for all the approaches we use the same sequence of (Gaussian) structural
innovations. Results are presented in �gures 1, 2 and 3. The �rst remarkable feature is that the
second order perturbation simulated paths (either with our without pruning) are closer to the EP
simulated paths than the �rst order perturbation simulated paths. When the Zero Lower Bound
is not binding4 (at current time t or in the expectations of the agents) the second order pertur-
bation simulated output is, on average, higher than the EP simulated output (0.017% in terms of
steady state level of output). Under the same conditions, the �rst order perturbation simulated
output is, on average, higher than the EP simulated output by 0.021%. One can conclude that
the discrepancies between EP and perturbation approaches are fairly small when the ZLB is not
an issue. Figure 1 shows that this conclusion does not hold when the ZLB is binding. In this
situation the di�erences between EP and perturbation approaches are much more important, up
to 8% in terms of steady state level of output. Put di�erently, if the EP algorithm provides an
accurate solution5, it means that using a perturbation approach to compute forecasts or IRFs
we may overestimate the level of output or consumption by 8% when the Zero Lower Bound is
binding (or when the agents expect that the ZLB will bind).

Figures 4 and 5 plot the distribution of the state variables, when considering the EP approach. In
�gure 4, we clearly see that, with this model and its baseline calibration described in table 1, the
ZLB binds in presence of large de�ationary e�ciency shocks. Overall, the probability of hitting
the ZLB is around 1%. The volatility of the endogenous state variables is generally pretty small.

4Or when the nominal interest rate is not negative if we do not impose the ZLB constraint, as in �gure 2.
5We still have to establish this point. We turn to the accuracy issue in the section 5.
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Larger deviations from the steady state are only observed when the nominal interest rate hits
the ZLB. We would not observe such deviations if the paths were simulated with a perturbation
approach6.

In the next section we present, in a general framework, two approaches for evaluating the accuracy
of the EP method with respect to the uncertainty about the future.

4. Accuracy checks

Using the EP approach to solve (20), we can, in principle, perfectly control the accuracy of the
solution with respect to the deterministic equations (20a), (20c) and (20d). Consequently, we
only have to check the accuracy of the solution with respect to the Euler type equations (20b),
which can be rewritten as a multivariate integral:

R(x−, s) ,
∫

Λ

F (y, x, x−, s,H (y+(u), x,Q(s, u))) dP(u) = 0 ∀ (x−, s) ∈ Ξ ⊆ Rnx+ns
+

where Λ ⊆ Rns and (y, y+(u), x) is provided by the EP algorithm 1 given initial conditions
(x−, s).

4.1. Accuracy on a growing sphere (Test #1). The �rst test consist in evaluating the resid-
ual R(x−, s) with state variables (x−, s) uniformly distributed on an hyper-sphere centered on
the deterministic steady state, (x?, s?). In our case, the two endogenous states are Θt and ∆t and
we have (x?, s?) = (1, 1, A?, 1) (see appendix B). Obviously, we cannot evaluate analytically the
multivariate integral appearing in the de�nition of the residuals. We use a Gaussian quadrature
approach (based on Hermite orthogonal polynomials because we assume that the innovations
are Gaussian, see Abramovitz and Stegun (1964, chapters 22 and 25.4)) to approximate these
residuals. In the tables of results we report the max of the approximated residuals78,

max
(x−,s)∈Sr

∣∣∣R̂(x−, s)
∣∣∣

where Sr = {(x−, s) ∈ Rnx+ns
+ ; ||(x−, s) − (x?, s?)||2 = r} is the hyper-sphere centered on the

deterministic steady state with radius r > 0. We use a Quasi Monte-Carlo approach to generate
points uniformly distributed in Sr (see Sobol (1977), Antonov and Saleev (1979), Bratley and
Fox (1988) and Joe and Kuo (2003)).

4.2. Accuracy along a simulated path (Test #2). The previous test has two shortcomings.
First, considering a uniform distribution over an hyper-sphere is ine�cient because the ergodic
distribution of the endogenous variables is not uniform. Consequently, we compute too much
residuals in regions of the state space where the ergodic probability mass implied by the structural
model is near zero. Second, this test ignores how the approximations errors are cumulated. Test
# 2 consist in simulating paths for the endogenous variables with EP algorithm 1. On each

point of the stochastic simulation we compute the approximated residuals R̂(x−, s), and we
report various moments (max, mean,...).

6Note that with a �rst order perturbation approximation these two variables are constant, the endogenous state
variables vanish. Note also that in this model, the steady state levels of the state variables are on the boundary
of the admissible values for these variables (price distortion, ∆t, is greater or equal to one, and Ωt is between zero
and one). This can be problematic because we are not able here to de�ne the Taylor approximation on a open
interval (and it is not clear if k-order approximations will deliver paths such that ∆t ≥ 1 and 0 ≤ Ωt ≤ 1).
7Note that F is a vector of Euler type equations, in the tables of results we report the statistics for each Euler
equation.
8In the tables 2 to 5 and in �gures 6(a) to 6(d), residuals of equations (5) to (8) are normalized so as to be
expressed as ratio of Ct, Z1,t, Z2,t and Z3,t, respectively.
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5. Results and final comments

5.1. Preliminaries. Before the presentation and discussion of our results, two remaining issues
speci�c to our model need to be stressed. First, as illustrated in �gure 5, the endogenous state
variables are not de�ned around the deterministic steady state. The price distortion, ∆, can
take values equal to its steady state or above, ie ∆ ≥ 1 and the transformed Lagrangian satis�es
0 ≤ Θ ≤ Θ? = 1. Consequently, it would not make any sense to consider values of the endogenous
states uniformly distributed on the (whole) hyper-sphere. Doing so, we would obtain endogenous
states, x−, such that ∆− < 1 and/or Θ− > 1. Even if our experience show that we are able to
solve the model under these conditions, the results are then meaningless. We need to restrict the
uniform distribution on a region of the hyper-sphere. To do so we simply re�ect the points against
the steady state when the levels of the endogenous states are meaningless. That is, if for a point
(x−, s) = (∆−,Θ−, A, εB) ∈ Sr we have, say, ∆− < 1, we rede�ne the price distortion, ∆−, as
1 + 1−∆−. Second, in the sequel we will evaluate the accuracy of the EP approach for di�erent
values of parameter ψ, which govern the curvature of the Kimball (1996) aggregation function
(the more ψ is negative the more kinked is the demand function). This parameter controls the
degree of non linearity in our model, the accuracy of the EP approach should depend on ψ and
we expect to see a deterioration of the accuracy when the magnitude of ψ is increased. This
parameter also a�ect the degree of price rigidity in the model. Ceteris paribus, an increase in
the magnitude of ψ increases the price rigidity. Consequently, with more negative values of the
aggregation technology parameter the model will generate less volatility in in�ation, and this
will decrease the probability for the ZLB to bind when large de�ationary productivity shocks hit
the economy. To limit this side e�ect, we adapt the value of the Calvo (1983) probability ν to
keep constant the slope of the Phillips curve. If we linearize the model, this slope (ie the reduced
form parameter associated to the marginal cost) is given by:

s =
ε− 1

ε(1− ψ)− 1

(1− νβ)(1− ν)

ν

Keeping the slope s constant9, the value of ν, as a function of ψ, is a root of the following
quadratic equation:

Q(ν) , ν2 − 1 + γ + β

β
ν +

1

β
= 0

with

γ = s

(
ε− 1

ε(1− ψ)− 1

)−1

Because Q(0) = 1/β > 0 and Q(1) = −γ/β < 0, we know that, for all admissible values of
the deep parameters, this polynomial equation admits only one root between zero and one (the
second root is greater than one and therefore meaningless). In the sequel, we will use this root
as the value of the Calvo (1983) probability when we change the value of ψ.

5.2. Results. Tables 2, 3 and 4 report the results for Test #1 with di�erent values for the Kim-
ball (1996) curvature parameter. Overall the residuals of the Euler equations are pretty small,
except when the radius of the hyper-sphere is equal to .1. But this case is not really relevant
with respect the volatility of the endogenous state variables (as illustrated in �gure 5 where a
10 percent deviation from the deterministic steady is never observed, even in a sample of 10000
periods). Surprisingly, the accuracy errors reported in these tables are of the same order of mag-
nitude than the stopping criterion we choose in the Newton algorithm used to solve the perfect
foresight models10 (see algorithm 1). This suggest that, in periods where the ZLB is not binding,

9For the baseline calibration, the value of the slope is s = 0.0751.
10We stop the Newton iterations when the residuals of the stacked dynamic equations are smaller than 10−5.
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we may improve the accuracy of the EP approach by choosing a smaller stopping criterion when
solving the perfect foresight models. Another remarkable result is that the accuracy does not
deteriorate when the nonlinearity is more important, ie when ψ is increased. As we will clearly
understand later, this is very likely caused by the ZLB. Even if we adapt the value of the Calvo
(1983) probability to keep constant the slope of the (linearized) Phillips curve, an increase of
ψ reduces the probability of a ZLB binding for long periods (the economy hits the ZLB less or
more softly).

Table 5 presents the results for test #2, with di�erent values for the Kimball (1996) curvature
parameter. We generated a sample of 10000 periods and computed the accuracy errors and
various statistics using a subsample of 8000 periods. As we concluded with the previous test,
the accuracy errors are not sensibly a�ected by the curvature of the aggregation function (ψ).
Again, we observe that the maximum accuracy error is a decreasing function of the Kimball
(1996) curvature parameter. In this model the volatility of the variables is decreased when we
increase the nonlinearity. Consequently, by increasing the magnitude of ψ, we reduce the prob-
ability of hitting the ZLB. Figure 5.2 plots the accuracy errors on a subsample (spanning the
periods 1200-1400) containing an episode where the ZLB binds. The remarkable feature is that
the accuracy errors deteriorate considerably (by a factor 100) when the economy is hitting the
ZLB.

This unpleasant result, may be explained by looking at the conditional density of consumption,
see �gure 5.2. When the ZLB is not binding, consumption is distributed around the deterministic
steady state, where the nonlinearity induced by the kinked demand function is not important.
But when the ZLB is binding, the distribution of consumption is �signi�cantly� shifted on the right
(ie the deterministic steady state is now in the left tail of the conditional density of consumption).
In this case, the endogenous variables visit a region where the demand function is e�ectively
kinked, and the accuracy errors induced by omitting the Jensen inequality are more important.
In this model, as shown in �gure 4, the ZLB binds only when the productivity shocks are
big enough (At must be greater than 1.04). This explains why the distribution of consumption
conditional on a binding ZLB is shifted on the right. Even in a larger model, where this condition
on the e�ciency is not necessary for the ZLB to bind, we would again observe a shift on the
right of the consumption's distribution, because households do not have incentives to postpone
consumption when the interest rate is low.
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σC 1.50000
η 2.00000
β 0.99700
ν 0.75000
ψ −0.10000
ε 6.00000
γπ 1.20000
π? 1.00533
h? 0.33300
ρa 0.98000
ρb 0.20000
σ2
a 0.00002
σ2
b 0.00001

Table 1. Calibration. The value of φ as a function of ε and ψ is de�ned in
the text, the value of ξh is de�ned by steady state restrictions. Given the values
of the deep parameters and the values of the autoregressive parameters (ρa and
ρb) we choose the size of the innovations to match the volatility of the growth
rates of consumption and output and of the in�ation and nominal interest rates
(using European data).

Radius Statistics Equation 5 Equation 6 Equation 7 Equation 8

r = .0001
max −4.5625 −3.9928 −4.1874 −5.4621
mean −4.5626 −3.9929 −4.1876 −5.4623
median −4.5626 −3.9929 −4.1876 −5.4623

r = .0010
max −4.5610 −3.9893 −4.1834 −5.4618
mean −4.5620 −3.9909 −4.1854 −5.4633
median −4.5619 −3.9908 −4.1852 −5.4634

r = .0100
max −4.5446 −3.9503 −4.1393 −5.4532
mean −4.5552 −3.9696 −4.1617 −5.4740
median −4.5542 −3.9680 −4.1595 −5.4749

r = .1000
max −2.0021 −1.6198 −1.7798 −2.2374
mean −4.3386 −3.6893 −3.8573 −5.2648
median −4.4767 −3.8921 −4.0534 −5.3734

Table 2. Accuracy on a growing sphere. The Kimball (1996) curvature
parameter is set to ψ = −.1. The reported statistics (maximum, average and
median of the unit free error absolute values expressed in base 10 logarithms)
are computed considering 1000 deviates uniformly distributed on an hyper-
sphere.
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Radius Statistics Equation 5 Equation 6 Equation 7 Equation 8

r = .0001
max −4.7086 −4.1386 −3.9080 −6.2203
mean −4.7088 −4.1401 −3.9089 −6.2278
median −4.7088 −4.1401 −3.9089 −6.2278

r = .0010
max −4.7070 −4.1253 −3.9001 −6.1591
mean −4.7088 −4.1401 −3.9089 −6.2292
median −4.7088 −4.1400 −3.9088 −6.2273

r = .0100
max −4.6907 −3.9578 −3.8044 −5.7778
mean −4.7086 −4.1350 −3.9047 −6.1149
median −4.7084 −4.1324 −3.9037 −6.0583

r = .1000
max −2.3512 −1.6323 −1.5055 −2.9112
mean −4.3514 −4.0334 −3.6585 −5.4341
median −4.6920 −4.1250 −3.9048 −5.6367

Table 3. Accuracy on a growing sphere. The Kimball (1996) curvature
parameter is set to ψ = −5. The reported statistics (maximum, average and
median of the unit free error absolute values expressed in base 10 logarithms)
are computed considering 1000 deviates uniformly distributed on an hyper-
sphere.

Radius Statistics Equation 5 Equation 6 Equation 7 Equation 8

r = .0001
max −4.6662 −3.6223 −3.4713 −5.5213
mean −4.6668 −3.6263 −3.4740 −5.5225
median −4.6667 −3.6266 −3.4742 −5.5225

r = .0010
max −4.6649 −3.5699 −3.4362 −5.5113
mean −4.6693 −3.6208 −3.4703 −5.5229
median −4.6671 −3.6219 −3.4712 −5.5222

r = .0100
max −4.6539 −3.4772 −3.3653 −5.4301
mean −4.6673 −3.6237 −3.4707 −5.5273
median −4.6660 −3.6239 −3.4724 −5.5211

r = .1000
max −2.6588 −1.6746 −1.5883 −3.3737
mean −4.3029 −3.4325 −3.1926 −5.2492
median −4.6367 −3.4936 −3.3863 −5.3683

Table 4. Accuracy on a growing sphere. The Kimball (1996) curvature
parameter is set to ψ = −10. The reported statistics (maximum, average and
median of the unit free error absolute values expressed in base 10 logarithms)
are computed considering 1000 deviates uniformly distributed on an hyper-
sphere.
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ψ Statistics Equation 5 Equation 6 Equation 7 Equation 8

ψ = −.1
max −0.9292 −1.1710 −1.2858 −1.1032
mean −3.8888 −3.6027 −3.7435 −4.1949
median −4.5602 −3.9919 −4.1864 −5.4641

ψ = −5
max −2.1846 −1.5794 −1.4371 −2.7911
mean −4.2430 −3.6145 −3.4458 −4.9554
median −4.7075 −4.1414 −3.9098 −5.8641

ψ = −10
max −2.5653 −1.6661 −1.5686 −3.3126
mean −4.3818 −3.3571 −3.2376 −5.1921
median −4.6659 −3.6226 −3.4710 −5.5169

Table 5. Accuracy along a simulated path. The reported statistics (max-
imum, average and median of the unit free error absolute values expressed in
base 10 logarithms) are computed considering a sample of 8000 simulated data
(with the EP approach) containing episodes where the ZLB is binding.
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Figure 1. Comparison between EP and perturbations (for output
paths, Yt) when the ZLB is binding. The deviations are expressed in per-
centage of the steady state level. Black circles are for the gaps between EP and
�rst order perturbation, red squares are for the gaps between EP and second
order perturbation and green triangles are for the gaps between EP and second
order perturbation with pruning as advocated by Kim et al. (2008).
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Figure 2. Comparison between EP and perturbations (for output
paths, Yt) when the ZLB is not imposed. The deviations are expressed
in percentage of the steady state level. Black circles are for the gaps between
EP and �rst order perturbation, red squares are for the gaps between EP and
second order perturbation and green triangles are for the gaps between EP and
second order perturbation with pruning as advocated by Kim et al. (2008).
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Figure 3. Comparison between EP and perturbations (for output
paths, Yt) when the ZLB is not binding. The deviations are expressed
in percentage of the steady state level. Black circles are for the gaps between
EP and �rst order perturbation, red squares are for the gaps between EP and
second order perturbation and green triangles are for the gaps between EP and
second order perturbation with pruning as advocated by Kim et al. (2008).
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Figure 4. Distribution of the exogenous state variables. Black dots, red
circles and green triangles respectively represent, the levels of e�ciency and risk
premium when the ZLB constraint is not binding, binding or expected to bind
in the future.
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Figure 5. Distribution of the endogenous state variables. Black dots,
red circles and green triangles respectively represent, the levels of the price
distorsion ∆t and the transformed Lagrangian Ωt when the ZLB constraint is
not binding, binding or expected to bind in the future.



20 S. ADJEMIAN AND M. JUILLARD

1220 1240 1260 1280 1300 1320 1340 1360 1380 1400

1

2

3

4

5

6

×10−3

(a)

1220 1240 1260 1280 1300 1320 1340 1360 1380 1400

−0.025

−0.020

−0.015

−0.010

−0.005

(b)

1220 1240 1260 1280 1300 1320 1340 1360 1380 1400

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

(c)

1220 1240 1260 1280 1300 1320 1340 1360 1380 1400
−16

−14

−12

−10

−8

−6

−4

−2

0
×10−4

(d)

Figure 6. Residuals of the Euler equations along a simulated path.
The Kimball (1996) curvature parameter is set to ψ = −5. The reported resid-
uals are unit free, ie equations (5) to (8) were respectively divided by λt, Z1,t,
Z2,t and Z3,t. We only plot a subsample of 200 periods containing an episode
were the ZLB is binding.
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Figure 7. Consumption conditional density. The dark and red curves re-
spectively represent the non parametric estimates for the density of consumption
conditional on �non binding ZLB� and a �binding ZLB�. These estimates were
obtained using simulated paths of 10000 periods, with the EP algorithm and our
baseline calibration. The vertical green line represent the deterministic steady
state for consumption.
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Appendix A. Price setting behavior

A.1. Final good sector. The �rst order condition associated to (FGS3) determines the demand
for intermediary good z:

(A.1)
Yt(z)

Yt
=

1

1 + ψ

[(
Pt(z)/Pt

Σt

)−(1+ψ)ε

+ ψ

]
where Σt is the Lagrange multiplier associated with the technological constraint in (FGS3). Sub-
stituting (A.1) in the technological constraint (FGS1)-(FGS2), one gets the following expression
for the Lagrange multiplier:

(A.2) Σt =

(∫ 1

0

(
Pt(z)

Pt

)1−ε(1+ψ)

dz

) 1
1−ε(1+ψ)

Equivalently, we have:

Σ
1−ε(1+ψ)
t =

∫ 1

0

(
Pt(z)

Pt

)1−ε(1+ψ)

dz

The price, Pt(z), appearing under the integral has been set optimally at time t−j with probability
(1− ν)νj . Therefore we also have:

Σ
1−ε(1+ψ)
t = (1− ν)

∞∑
j=0

νj
(
π?j

P ?t−j
Pt

)1−ε(1+ψ)

and this expression admits the following recursive representation:

(A.3) Θt = (1− ν)

(
P ?t
Pt

) 1
1−φ

+ ν

(
π?

πt

) 1
1−φ

Θt−1

with φ = ε(1+ψ)
ε(1+ψ)−1 and Ωt , Σ

1
1−φ
t . This proves equation (10). Finally, as the �nal good sector is

perfectly competitive, pro�t for the representative �rm must be zero and we derive the aggregate
price index:

(A.4) Pt =
ψ

1 + ψ

∫ 1

0

Pt(z)dz +
1

1 + ψ

(∫ 1

0

Pt(z)
1−(1+ψ)εdz

) 1
1−(1+ψ)ε

Comparing the last equation with (A.2) and dividing by Pt we also have:

ψ

1 + ψ

∫ 1

0

Pt(z)

Pt
dz +

Θ1−φ
t

1 + ψ
= 1

where the integral in the �rst term of the left hand side also admits a recursive representation.
Let ϑt be the sum of relative prices at time t we have:

(A.5) ϑt = (1− ν)

(
P ?t
Pt

)
+ ν

(
π?

πt

)
ϑt−1

so that �nally we have:

(A.6)
ψϑt

1 + ψ
+

Θ1−φ
t

1 + ψ
= 1

with ϑt and Θt respectively de�ned in (A.5) and (A.3). This last equation de�nes a non linear
deterministic relationship between two states variables, ϑt and Θt. Substituting (A.6) in (A.5)
we obtain:

(A.7) 1 + ψ −Θ1−φ
t = ψ(1− ν)

(
P ?t
Pt

)
+ ν

(
π?

πt

)(
1 + ψ −Θ1−φ

t−1

)
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A.2. Intermediate goods sector. Let Ṽt be the value of a �rm that receives a positive signal
in period t and Vt(Pt−1(z)) the value of a �rm that receives a negative signal. As a �rm that
receives a negative signal follows simply the ad hoc pricing rule Pt(z) = π?Pt−1(z), its value at
time t depends only on Pt−1(z). For a �rm that receives a positive signal, its value at period t is

(A.8) Ṽt = max
P

{
Πt

(
P
)

+ βEt
[

Λt+1

Λt

(
(1− ν)Ṽt+1 + νVt+1

(
P
))]}

where Λt is the Lagrange multiplier of the budget constraint of the representative household and
Λt = Ptλt. Let P

? be the optimal price choosen by the �rm that can re�optimize. The value of
a �rm that can't re�optimize is

Vt
(
Pt−1(z)

)
=Πt

(
π?Pt−1(z)

)
+βEt

[
Λt+1

Λt

(
(1− ν)Ṽt+1 + νVt+1

(
π?Pt−1(z)

))](A.9)

The �rst order condition and the envelope theorem give:

(A.10a) Π′t
(
P ?
)

+ βνEt
[

Λt+1

Λt
V ′t+1

(
P ?
)]

= 0

(A.10b)
V ′t
(
Pt−1(z)

)
π?

= Π′t
(
π?Pt−1(z)

)
+ βνEt

[
Λt+1

Λt
V ′t+1

(
π?Pt−1(z)

)]
with the derivative of pro�t at P:

Π′t
(
P
)

=
1− ε(1 + ψ)

1 + ψ

(
P
Pt

)−(1+ψ)ε

Σ
(1+ψ)ε
t Yt

+ε

(
P
Pt

)−(1+ψ)ε−1

Σ
(1+ψ)ε
t mctYt +

ψ

1 + ψ
Yt

(A.11)

Let's write temporarily, in order to simplify notations, P, the price inherited from the past. One
can rewrite, one period ahead

V ′t+1

(
P
)

= π?Π′t+1

(
π?P

)
+ βνπ?Et+1

[
Λt+2

Λt+1
V ′t+2

(
π?P

)]
Iterating forward and applying conditional expectation at time t, one gets

Et
[
V ′t+1

(
P
)]

= Et

 ∞∑
j=0

(βν)jπ?j+1 Λt+1+j

Λt+1
Π′t+1+j

(
π?j+1P

)
By substitution ( P = P ?) in the �rst order condition, one gets the following condition for the
price chosen by the �rm that gets a positive signal:

(A.12) Et

 ∞∑
j=0

(βν)jπ?j
Λt+j
Λt

Π′t+j
(
π?jP ?t

) = 0

One can get a more explicit expression for the price that satis�es equation (A.12). Substituting

in this equation the expression of marginal pro�t (A.11) and dividing by P ?t
−(1+ψ)ε one gets:

(A.13)
P ?t
Pt

= φ
Z1,t

Z2,t
+ ψ(φ− 1)

(
P ?t
Pt

)1+(1+ψ)ε
Z3,t

Z2,t
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with

(A.14a) Z1,t = Et
∞∑
i=0

(βν)jλt+j

(
π?j

Pt+j/Pt

)−(1+ψ)ε

Σ
(1+ψ)ε
t+j mct+jYt+j

(A.14b) Z2,t = Et
∞∑
i=0

(βν)jλt+j

(
π?j

Pt+j/Pt

)1−(1+ψ)εt

Σ
(1+ψ)ε
t+j Yt+j

(A.14c) Z3,t = Et
∞∑
i=0

(βν)jλt+j
π?j

Pt+j/Pt
Yt+j

writing Pt+j/Pt, the in�ation factor between t and t + j, can be written equivalently Πj
i=1πt+i,

and we can represent variables Z1,t, Z2,t et Z3,t in recursive form:

(A.15a) Z1,t = λ̂t
wt
At

Θ−φt Ŷt + βνEt

[(
π?

πt+1

) φ
1−φ

Z1,t+1

]

(A.15b) Z2,t = λ̂tΘ
−φ
t Ŷt + βνEt

[(
π?

πt+1

) 1
1−φ

Z2,t+1

]

(A.15c) Z3,t = λ̂tŶt + βνEt
[(

π?

πt+1

)
Z3,t+1

]
Appendix B. Steady state of the model

For the exogenous state variables we have:

(B.1) A = A?

(B.2) ε?B = 1

We impose the following steady state levels for in�ation and hours:

(B.3) π? = 1.02

(B.4) h? = 0.33

The long run level of the nominal interest is a function of the discount factor:

(B.5) R? =
π?

β

Equations (10) and (11) at the steady states give:

(1− ν)
[
p?

1
1−φ −Θ?

]
= 0

(1− ν)
[
ψp? + 1− ψ −Θ?1−φ

]
= 0

These two equations are satis�ed i�:

(B.6) p? = 1

(B.7) Θ? = 1

Plugging these results in equation (12) we get the steady state level of the price distorsion:

(B.8) ∆? = 1
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Equations (6) to (8) imply

(a) Z ?
1 =

mc?Y ?

1− νβ
where the marginal cost at the steady state is mc? = w?/A?,

(b) Z ?
2 =

Y ?

1− νβ
and

(c) Z ?
3 =

Y ?

1− νβ
Substituting (a) to (c) in equation (9) at the steady state, we obtain:

Z ?
2

(1 + ψ)(1− φ)
+

Z ?
3 ψ

1 + ψ
=

φZ ?
1

(1 + ψ)(1− φ)

⇔ 1

(1 + ψ)(1− φ)
+

ψ

1 + ψ
=

φmc?

(1 + ψ)(1− φ)

Substituting the de�nitions of φ and mc? in the last equation, we get the steady state level of
real wage:

(B.9) w? =
ε− 1

ε
A?

Because the e�ect of the price distortion at the steady state cancels out, equation (13) implies:

(B.10) Y ? = A?h?

We obtain the steady state level of consumption by equation (14):

(B.11) C? = A?h?

and the level of the marginal utility of consumption using equation (3):

(B.12) λ? = (A?h?)
−σc

The value of the scale parameter ξh is determined by the steady state restrictions, e.g. equation
(4):

(B.13) ξh = −
(A?h?)

−σc ε−1
ε

h?η

The steady state of the auxiliary variables Z1, Z2, Z3, E1, E2, E3 and E4 are obvious.
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