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STOCHASTIC EXTENDED PATH APPROACH

STÉPHANE ADJEMIAN AND MICHEL JUILLARD

Abstract. The Extended Path (EP) approach is known to provide a simple and fairly accurate
solution to large scaled nonlinear models. The main drawback of the EP approach is that the
Jensen inequality is neglected, because future shocks are (deterministicly) set to their expected
value of zero. Previous contributions shown that the cost of this approximation is small compared
to the cost of neglecting the deterministic nonlinearities. But the accuracy errors are significantly
increased in the presence of binding constraints (such as a Zero Lower Bound on nominal interest
rates). In this paper we propose a simple extension to the EP approach by considering that
the structural innovations in t+1 are non zero and keeping the innovations in t+s (s>1) equal to
their expected value of zero. We use a quadrature approach to compute the expectations under
this assumption. We evaluate the accuracy of the Stochastic Extended Path approach on a Real
Business Cycle model. The computing time of this approach is polynomial in the number of
endogenous variables but exponential with respect to the number of structural innovations.

1. Introduction

The aim of this paper is to improve the Extended Path approach when solving a non linear
model with occasionally binding constraints.

The extended path approach relies on a perfect foresight solver to take full account of the non–
linearities introduced by the occasionally binding constraints. For each period of the sample,
contemporaneous exogenous innovations are treated as surprise shocks in a deterministic sim-
ulation where shocks are set to their expected value of zero in all future periods. This approach
neglects the Jensen inequality, but Adjemian and Juillard (2011) considered that it was a minor
drawback in comparison with the correct treatment of the non–linearities induced by the zero
lower bound.

Few studies, e.g. Gagnon (1990) and Love (2009), evaluate the accuracy of this simulation
method. These authors, considering a stochastic growth model, show that the approximation
errors are reasonable and that the extended path approach performs as well (or even better)
as a global approximation approach. However the degree of non linearity of the stochastic
growth model with a Cobb-Douglas technology is relatively weak and they do not consider
models with occasionally binding constraints.

In a previous contribution, e.g. Adjemian and Juillard (2011), we evaluated the accuracy of the
EP approach when simulating a New-Keynesian model with Calvo (1983) nominal rigidity on
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prices, Kimball (1996) aggregation function of intermediate goods and a Zero Lower Bound on
nominal interest rates. We found accuracy errors as small as in Gagnon (1990) and Love (2009)
when the ZLB is not binding, but our main result is that the accuracy is sensibly degraded
when the nominal interest rate hits the zero lower bound.

We propose a simple extension to the EP approach by considering that the structural inno-
vations in t + s, s = 1, . . . , S are non zero and keeping the innovations in t + s (s > S) equal
to their expected value of zero. We use a quadrature approach to compute the expectations
under this assumption. We evaluate the accuracy of the Stochastic Extended Path approach on
two models: a standard Real Business Cycle model and an RBC model with irreversible invest-
ment. We show that the accuracy errors are significantly reduced when S ≥ 1. The computing
time of this approach is polynomial in the number of endogenous variables but exponential
with respect to the number of structural innovations.

In section 4 we present the models considered to evaluate the accuracy of the extended path
approach. The simulation method is presented in section 2 and the accuracy checks are intro-
duced in section 5.

2. Stochastic Extended path approach

Nonlinear stochastic equilibrium model may be represented generally as follows:

(1a) st = Q(st−1, ut)

(1b) F (yt, xt, st, Et [Et+1]) = 0

(1c) G(yt, xt+1, xt, st) = 0

(1d) Et = H(yt, xt, st)

where st is a ns × 1 vector of exogenous variables, the innovation ut is a multivariate random
variable in Rns with expectation 0 and variance Σu (the cumulative distribution function of u
is denoted P(u)), xt is a nx × 1 vector of endogenous state variables, yt is a ny × 1 vector of
non predetermined variables and Et is a nE × 1 vector of auxiliary variables. Q, F, G and H are
non linear continuous functions (not necessarily differentiable everywhere).

2.1. EP algorithm. The extended path algorithm (EP hereafter) is a simulation approach for
generating time series for the endogenous variables {yt, xt+1}T

t=1 given an initial condition for
the state variables, (s0, x1), and a sequence of innovations {ut}T

t=1. The extended path approach
indirectly characterizes the decision rules (ie the functions relating the non predetermined
variables, yt, with the state variables, xt and st) by generating time-series for the endogenous
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variables. Basically, the trick is to assume that all the agents believe that the innovations will
be always zero in the future. Given the state of the economy at date t, (st, xt), we can then
solve (1). Here is a sketch of the algorithm:

Algorithm 1 Extended path algorithm

1. H ← Set the horizon of the perfect foresight models.
2. (s1, x1)← Choose an initial condition for the state variables.
3. for t = 1 to T do
4. (yt, xt+1)← Solve a perfect foresight model with terminal condition yt+H = y?.
5. v← Draw independent uniform variates (ns × 1).
6. u← P−1(v)
7. st+1 ← Q(st, u)
8. end for

Note that, to be consistent with our notations, the initial condition should be (s0, x1), whereas
in step 2 of algorithm 1 we s et (s1, x1) as the initial condition. This point incorporates the
effect of the contemporaneous innovations (ut).

The main advantage of this approach is that we can simulate large models with an arbitrary
precision, because the number of needed operations increases polynomially with the number
of endogenous variables (the main task when solving the perfect foresight model consist in
inverting a sparse matrix) and not exponentially (as it would with a global approximation
of the policy rules). The extended path approach does not suffer from the so called curse
of dimensionality. A second advantage is that the EP approach does not require any special
treatment when the model admit occasionally binding constraints, because it does not impose
the differentiability of F or G.

Obviously these advantages come at a cost: with the EP approach we abstract from the ef-
fects of uncertainty on the behavior of the agents (by assuming that the agents believe that
the innovations of the exogenous states will be zero in the future we abstract from the effects
of uncertainty about the future). However, two points are worth noting. First, large scaled
models are usually solved considering a first order Taylor approximation of Q, F, G and H

in (1). If we linearize the model, we will also neglect the effects of uncertainty about the fu-
ture and we will not be able to treat the occasionally binding constraints. In this respect the
EP approach dominates the first order perturbation approach. We could instead consider a
k-order perturbation approach. If k is greater than one, the certainty equivalence property is
not satisfied and uncertainty about the future has an impact on agents decisions. Nevertheless,
because this approach requires the differentiability everywhere of the model, we would not be
able to treat correctly occasionally binding constraints. Second, if we agree with Lucas (1987,
2003) that the cost of fluctuations is very small, it is most likely that the error of approxima-
tion induced by our approximation about future innovations is small. Indeed, Gagnon (1990),
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Love (2009) and Adjemian and Juillard (2011) show that the accuracy errors are fairly small, as
long as the economy does not hit an occasionally binding constraint. When the economy hits
an occasionally binding constraint the household do not have the possibility to smooth their
consumption levels, so that fluctuations have a bigger impact on welfare. In this situation the
assumption underlying the EP approach is more problematic. In the next subsection we show
how to (partially) relax this assumption about the future innovations.

2.2. Stochastic EP algorithm. To allow for non zero shocks in periods t + 1, t + 2, . . . , t + S
(S ≥ 1), we need to explicitly evaluate the (conditional) expectations appearing in (1b). We
use Gaussian quadrature. Suppose that X is a Gaussian random variable with mean zero
and variance σ2

x > 0, and that we need to evaluate E[ϕ(X)], where ϕ is a continuous func-
tion. By definitions of the expectation and the Gaussian probability density function, we have

E[ϕ(X)] = 1
σx
√

2π

∫ ∞
−∞ ϕ(x)e

− x2

2σ2
x dx. This integral can be approximated using the following

result (see Judd (1998)):∫ ∞

−∞
φ(x)e−x2

dx =
n

∑
i=1

ωiφ(xi) +
n!
√

n
2n

φ(2n)(ξ)

(2n)!

for any ξ ∈ R, where the last term on the right hand side is the approximation error, xi

(i = 1, . . . , n) are the roots of an order n Hermite polynomial, and the weights ωi are positive.
For a given order of approximation n, the approximation error is proportional to the order
2n derivate of the function to be integrated. This results tells us that is possible to find out
a sequence of weights ωi such that the evaluation of the integral with the sum of the right
hand side is exact for any order 2n − 1 polynomial. Golub and Welsch (1969) describe how
to calculate the quadrature weights and nodes (ωi, xi) by computing the eigenvalues and
eigenvectors of a symmetric tridiagonal matrix. Obviously a change of variable is needed to
evaluate E[ϕ(X)]. We define z = x/σx

√
2, and consider the following approximation for the

expectation:

E[ϕ(X)] ≈ 1√
π

n

∑
i=1

ωi ϕ(zi)

If X is a multivariate Gaussian random variable we use a Tensor product approach. For
instance if X is defined in Rm, E[X] = 0, V[X] = Σ, and ψ(x) is a function from Rm to
Rq, we use the following approximation:

E[ψ(X)] = (2π)−
m
2 Σ−

1
2

∫
Rm

ψ(x)e−
1
2 x′Σ−1xdx

≈ π−
m
2

n

∑
i1=1

n

∑
i2=1
· · ·

n

∑
im=1

ωi1 ωi2 . . . ωim ψ(z1
i1 , z2

i2 , . . . , zm
im)

with the change of variables z ≡ (z1, z2, . . . , zq)′ = Σ−
1
2 x/
√

2. The drawback of this tensor
product rule is that the number of function ψ evaluations is exponential with respect to the
dimension of X. As a less expensive alternative, we could consider monomial rules or the use
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of sparse grids.

We use this Gaussian quadrature to approximate the expectation in the Euler equations (1b).
Suppose that S = 1, for a given order of approximation p and associated Gaussian quadrature
weights and nodes {(ωi, xi); i = 1, . . . , p}, we can approximate the expectations at time t by
solving p perfect foresight models with shocks in t + 1 defined by the Gaussian quadrature
nodes and averaging the p simulated paths for the endogenous variables with weights given
by the Gaussian quadrature weights. More generally, if S > 1 we define paths for the future
shocks. The figure 7 illustrates the paths of future innovations to be considered if S = p = 3.
The most likely sequence of innovation is the central path where the innovations remain null
in the future. Again the number of paths explode exponentially when S grows. If we have one
scalar innovation in the model, and if we use an order p Gaussian approximation, the number
of paths is pS. If we have more than one innovation (ns > 1), the total number of paths is pSns .
We approximate the expectations at time t by solving pSns perfect foresight models with these
sequences of future innovations and averaging the pSns simulated paths for the endogenous
variables with the probability of each path. Clearly, this approach suffers from the well known
Curse of Dimensionality. Note however that the proposed computation of the expectation is an
embarrassingly parallel problem1, meaning that it is quite simple to distribute the evaluation
of the expected terms on multiple threads.

The stochastic extended path approach is more formally described in algorithm 2. In this case
we assume that the innovations are normally distributed. For another parametric assumption
about the distribution of the innovations we may have to adapt the Gaussian quadrature rule.

Note that an alternative implementation, which can be done in a Dynare mod file (see Ad-
jemian et al. (2011)), would be to build an extended model consisting in the replication of the
original model for different paths of the future innovations (treated as parameters) and a set
of equations for averaging the replicated endogenous variables. With this extended model, the
SEP approach can be implemented using algorithm 1 instead of algorithm 2.

1It is true that parallelization does not solve the Curse of Dimensionality issue, but in practice it can considerably reduce
the burden cost of evaluating these integrals.
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Algorithm 2 Stochastic extended path algorithm

1. H ← Set the deterministic horizon of the perfect foresight models.
2. S← Set the stochastic horizon of the SEP solver.
3. p← Set the order of approximation of the (Hermite) Gaussian quadrature.
4. {(εi, ωi); i = 1, . . . , p} ← Compute the weights and nodes of the Gaussian quadrature.
5. {(ε1,j . . . , εS,j, vj); j = 1, . . . , pSns} ← Enumerate all the future paths for the innovations.

6. {(ε1,j . . . , εS,j, v?
j ); j = 1, . . . , pSns} ← Normalize the weights so that ∑

pSns

j=1 v?
j = 1.

7. {(u1,j, . . . , uS,j, v?
j ); j = 1, . . . , pSns} ← Normalize the shocks: us,j = Σ−

1
2 εs,j/

√
2.

8. (s1, x1)← Choose an initial condition for the state variables.
9. for t = 1 to T do

10. y = 0← Initialize the time t endogenous non predetermined variables.
11. x+ = 0← Initialize the time t + 1 endogenous state variables.
12. for j = 1 to pSns do
13. (yj, x+,j)← Solve a PF model with yt+H = y? and future shocks u1,j, . . . , uS,j.
14. (y, x+) = (y, x+) + v?

j × (yj, x+,j)← Update the endogenous variables.
15. end for
16. (yt, xt+1) = (y, x+)← Set the non predetermined and state variables.
17. u← Draw from a multivariate Gaussian distribution with variance Σ.
18. st+1 ← Q(st, u)
19. end for

3. Illustration

We start with a simple nonlinear asset pricing model, proposed by Burnside (1998), for which
there exist a closed-form solution. It is an endowment economy where a single perishable
consumption good produced by a single tree. A representative household can hold equity to
transfer consumption from one period to the next. The household’s inter temporal utility is
given by

Et

{
∞

∑
τ=0

βt−τ cθ
t+τ

θ

}
with θ ∈ (−∞, 0) ∪ (0, 1]

where ct represents consumption in period t.
The budget constraint is given by

ptet+1 + ct = (pt + dt) et

where pt is the price of one unit of equity. et indicates the number of units of equity detained
by the household at the beginning of period t and dt is the dividend paid for one unit of equity.
Dividends dt are growing at rate xt:

dt = exp (xt) dt−1

xt = (1− ρ)x̄ + ρxt−1 + εt
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The dynamics of this economy can be summarized by

yt = βEt {exp (θxt+1) (1 + yt+1)}

xt = (1− ρ)x̄ + ρxt−1 + εt

where yt = pt/dt is the price-dividend ratio.
It is easy to show that yt can be written as the current value of future dividends growth rates:

yt = Et

{
∞

∑
i=1

βτ exp

(
i

∑
j=1

θxt+j

)}

= Et

{
∞

∑
i=1

βτ exp

(
θ

i

∑
j=1

x̄ + ρi x̂t +
j

∑
`=1

ρj−`εt+`

)}
with x̂t = xt − x̄.
Using formulas for the distribution of the log-normal random variable, Burnside (1998) shows
that the closed form solution is

yt =
∞

∑
i=1

βiexp (ai + bi x̂t)

where

ai = θx̄i +
θ2σ2

2(1− ρ)2

(
i− 2ρ

1− ρi

1− ρ
+ ρ2 1− ρ2i

1− ρ2

)
and

bi =
θρ
(
1− ρi)

1− ρ

3.1. The extended path approach. In the extended path approach, one sets future shocks to
their expected value, E {εt+`} = 0, ` = 1, . . . , ∞. The corresponding solution is given by

yt =
∞

∑
i=1

βiexp (ai + bi x̂t)

where

ai = θx̄i +
θ2σ2

2(1− ρ)2

(
i− 2ρ

1− ρi

1− ρ
+ ρ2 1− ρ2i

1− ρ2

)
In the extended path approach, one sets future shocks to their expected value, E {εt+`} = 0,
` = 1, . . . , ∞. The corresponding solution is given by

yt =
∞

∑
i=1

βiexp (ai + bi x̂t)

where
ai = θx̄i

and

bi =
θρ
(
1− ρi)

1− ρ
.
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3.2. Numerical simulation. Consider the following calibration:

x̄ = 0.0179,

ρ = −0.139,

θ = −1.5,

β = 0.95,

σ = 0.0348.

Given the particular nature of the model, it is possible to compute the deterministic steady
state exactly:

ȳ =
∞

∑
i=1

βieθx̄i

=
βeθx̄

1− βeθx̄

= 12.3035

It is also possible to compute the risky steady state, defined as the fix point in absence of shock
this period:

ỹ =
∞

∑
i=1

βiexp
(

θx̄i +
θ2σ2

2(1− ρ)2

(
i− 2ρ

1− ρi

1− ρ
+ ρ2 1− ρ2i

1− ρ2

))
= 12.4812

3.3. Comparing expended path and closed-form solution. We can then compute the differ-
ence between expended path approximation, ŷt and the closed-form solution, yt.
We use 800 terms to approximate the infinite summation and run simulations over 30000
periods. We report both the maximum and minimum difference between the exact solution
and the extended path approximation:

min (yt − ŷt) = 0.1726

max (yt − ŷt) = 0.1820

The exact solutions takes into account the non-linear effect of future volatility and is systemat-
ically higher than the extended path approximation that is computed as if future shocks were
always zero.
The effect of future volatility isn’t trivial and can be apprehended by looking at the difference
between the deterministic and the risky steady state. The relative difference is equal to

ỹ− ȳ
ȳ

= 1.44%.
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On the other hand, the small difference between minimum and maximum differences reported
above suggests that the effect of future volatility doesn’t depend much on the state of the
economy.

3.4. Stochastic extended path. A k-order stochastic expended path approach computes the
conditional expectation taking into accounts the shocks over the next k periods.
The closed-form formula is

yt =
∞

∑
i=1

βiexp (ai + bi x̂t)

where

ai = θx̄i +


θ2σ2

2(1−ρ)2

(
i− 2ρ

1−ρi

1−ρ + ρ2 1−ρ2i

1−ρ2

)
for i ≤ k

θ2σ2

2(1−ρ)2

(
k− 2ρ

ρi−k−ρi

1−ρ + ρ2 ρ2(i−k)−ρ2i

1−ρ2

)
for i > k

and

bi =
θρ
(
1− ρi)

1− ρ

3.5. Quantitative evaluation. We want to examine to which extent, the stochastic extended
path approach is able to take into account the effect of future volatility on today’s decision. To
do so, we use stochastic extended path at different orders to compute the risky steady state.
In this model, the risky steady state is simply computed by setting to zero the shock of the
current period and considering only the distribution of future shocks over the k next periods.
As mentioned above, for the given calibration, the deterministic steady state is equal to 12.3035
and the risky steady state, 12.4812.
In Table 1, we report the percentage of the difference between the theoretical value of the risk
steady state and the deterministic steady state that is actually taken into account by a stochastic
extended path approach of order k.

k Percentage
1 7.4%
2 14.3%
9 50.0%

30 90.1%
60 99.0%

Table 1. (ỹ− ȳ)/ȳ, in percentage

It is obvious that a stochastic extended path approach of large order is required to give full
account of the effect of future volatility on today’s decisions. In the last section of the paper,
we propose a hybrid approach using ideas from the perturbation method to better take into
account the effect of future volatility.
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4. Description of the models

This section describes the basic DSGE models used as benchmarks in this paper. We con-
sider two Real Business Cycle models with a CES production function in order to control the
degree of non linearity and assess the sensitivity of the accuracy errors of the (Stochastic) Ex-
tended Path approach with respect to the non linearity. Assuming that the investment may
be irreversible (model # 2) allows us to evaluate the consequences of the occasionally binding
constraints in terms of accuracy.

4.1. Model #1 (Standard RBC model). The social planner problem is as follows:

max
{ct+j ,lt+j ,kt+1+j}∞

j=0

Wt =
∞

∑
j=0

βju(ct+j, lt+j)

s.t.

yt = ct + it

yt = At f (kt, lt)

kt+1 = it + (1− δ)kt

At = A?e
at− 1

2
σ2

ε
1−ρ2

at = ρat−1 + εt

(SP1-1)

with the following specifications:

(SP-2) u(ct, lt) =
(
cθ

t (1− lt)1−θ
)1−τ

1− τ

and

(SP-3) f (kt, lt) =
(

αkψ
t + (1− α)lψ

t

) 1
ψ .

where εt is a Gaussian white noise with zero mean and variance σ2
ε . The partial derivatives are

uc(ct, lt) = θ

(
cθ

t (1− lt)1−θ
)1−τ

ct

ul(ct, lt) = −(1− θ)

(
cθ

t (1− lt)1−θ
)1−τ

lt

fk(kt, lt) = αkψ−1
t

(
αkψ

t + (1− α)lψ
t

) 1
ψ−1

fl(kt, lt) = (1− α)lψ−1
t

(
αkψ

t + (1− α)lψ
t

) 1
ψ−1

.
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The first order conditions are given by:

(2a) uc(ct, lt)− βEt

[
uc(ct+1, lt+1)

(
At+1 fk(kt+1, lt+1) + 1− δ

)]
= 0

(2b) − ul(ct, lt)
uc(ct, lt)

− At fl(kt, lt) = 0

(2c) ct + kt+1 − At f (kt, lt)− (1− δ)kt = 0

4.2. Model #2 (RBC model with irreversible investment). We now suppose that the social
planner is constrained to positive investment paths. We restate its problem as:

max
{ct+j ,lt+j ,kt+1+j}∞

j=0

Wt =
∞

∑
j=0

βju(ct+j, lt+j)

s.t.

yt = ct + it

yt = At f (kt, lt)

kt+1 = it + (1− δ)kt

it ≥ 0

At = A?e
at− 1

2
σ2

ε
1−ρ2

at = ρat−1 + εt

(SP2-1)

where the technology ( f ) and the preferences (u) are respectively defined in SP-3 and SP-2.
The first order conditions are given by:

(3a) uc(ct, lt)− µt = βEt

[
uc(ct+1, lt+1)

(
At+1 fk(kt+1, lt+1) + 1− δ

)
− µt+1(1− δ)

]

(3b) − ul(ct, lt)
uc(ct, lt)

− At fl(kt, lt) = 0

(3c) ct + kt+1 − At f (kt, lt)− (1− δ)kt = 0

(3d) µt (kt+1 − (1− δ)kt) = 0

where µt is the Lagrange multiplier associated to the positiveness constraint on investment.

5. Numerical illustration and accuracy checks

Figure 1 plots the evolution of investment in the RBC model with irreversible investment with
stochastic extended path at different orders. We use a 3-node quadrature formula. It illustrates
that, close to non-negativity boundary, the more one takes into account future uncertainty the
bigger the precaution in the form of a larger investment. Note that the Figure is a window out
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Figure 1. Simulated trajectory of investment for different approximation schemes

of a longer simulation and that the initial differences in the different trajectories result from
previous events, not shown in the Figure.
Using the (S)EP approach to solve (1), we can, in principle, perfectly control the accuracy of
the solution with respect to the deterministic equations (1a), (1c) and (1d). Consequently, we
only have to check the accuracy of the solution with respect to the Euler type equations (1b),
which can be rewritten as a multivariate integral:

R(x, s) ,
∫

Λ
F (y, x, s,H (y+(u), x+(u),Q(s, u)))dP(u) = 0 ∀ (x, s) ∈ Ξ ⊆ R

nx+ns
+

where Λ ⊆ Rns and (y, y+(u), x+(u)) is provided by the stochastic extended path algorithm 2
given initial conditions (x, s). Provided that the number of nodes used to approximate the in-
tegral defining the Euler residual R(x, s) is the same that the number of nodes (p) used in the
SEP algorithm 2, this measure of the Euler residual is zero by construction (for S = 1). More-
over, because the output of the (S)EP algorithms are time series for the endogenous variables
rather than policy rules and transition functions, it is more natural to compare the different
algorithms following the Den Haan and Marcet (1994) approach.
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Given simulated time series for the endogenous variables, {x̄t, ȳt, s̄t, ūt}T
t=1 provided by algo-

rithms 1 or 2, we define the expectation errors as:

ēt+1 = F (ȳt, x̄t, s̄t,H (ȳt+1, x̄t+1, s̄t+1))

If the model is correctly solved, these residuals must be orthogonal to any non linear functions
of variables appearing in the information set. More formally, the rational expectation moment
condition must be satisfied:

E[et+1 ⊗ h(xt, st)] = 0

for any function h of the state variables. In practice we prefer the solution method yielding the
sample rational expectation condition moment closer to zero. Let

BT = T−1
T

∑
t=1

ēt+1 ⊗ h(x̄t, s̄t)

be the sample rational expectation condition moment, and define the following statistic

ST = TBT A−1
T BT

where the weighting matrix At is a consistent estimator of the long run variance of et+1 ⊗
h(xt, st), that is a consistent estimator of:

S2 =
∞

∑
i=−∞

E
[
(et+1 ⊗ h(xt, st)) (et+1 ⊗ h(xt, st))

′
]

Den Haan and Marcet (1994) establish that, if the simulated time series solve the rational
expectation model and if the long run variance S2 is finite and invertible, we must have in the
limit :

ST =⇒
T→∞

χ2(k)

where k is the number of moment conditions (i.e. the number of elements in the vector et+1 ⊗
h(xt, st)). In the sequel, we use this asymptotic result to compute p-values and compare the
different solution strategies.

6. Extensions

The previous experiments point to two problems: the number of nodes increases very rapidly
as the order of the stochastic extended path approach increases and it would take very high
orders to fully account for the effect of future volatility in models such as Burnside (1998). We
propose two extensions to address these problems.
The first one suggests to use sparser trees and less nodes to evaluate numerically the condi-
tional expectation. The second uses a hybrid approach including results from the perturbation
method to account for the effect of future volatility.

6.1. Sparse trees. In the basic method described above, all branches of the tree have the same
length and switch back to the non-stochastic extended path method at the same period. But
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Figure 2. Simulated trajectory of investment for different approximation schemes

this implies considering nodes with very little weight in the computation of the conditional
expectation. For example, in Figure 7, the integration weights are as follows:

ω1 = 0.1667,

ω2 = 0.6667,

ω3 = 0.1667.

This implies that the weight in the computation of the conditional expectation at period t, of
the very top node is 0.16673 = 0.0046, while the weight of the middle node, is 0.66673 = 0.2963.
The idea that we have been experimenting with is to extended only the branch with the
largest weight, corresponding to the central node, and to switch back immediately to the
non-stochastic extended path approach for the nodes with smaller weights. The resulting tree
for 3 nodes, where the longest branch last 3 periods, is displayed in Figure 7.
Figure 2 compares the simulation of the RBC model with irreversible investment with a full
tree at order 2 and a sparse tree at order 10. A higher order permits to take into account the
asymmetric effect of possibly hitting the constraint further in the future. The den Haan and
Marcet statistic2 also confirms that the simulation with a sparse tree of order 10 generates a one

2We use 10000 observations, discarding the first 500 to compute the den Haan and Marcet statistic for the one period
ahead prediction of consumption, using only the constant as instrument
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period ahead prediction error for consumption that is less predictible than for the simulation
with a full tree of order 2. The den Haan Marcet statistic is 38.9 for the sparse tree approach
of order 10, but 48.8 for the full tree of order 2.

6.2. A hybrid approach. As illustrated in the previous section, it is necessary to factor in the
expectations for a large number of periods forward (the order of stochastic extended path) to
obtain an accurate figure of the effects of future volatility. However, even a local approxima-
tion with a Taylor expansion of low order provides better information on this effect of future
volatility. This suggests to combine the two approaches. In the perturbation approach, the
effect of future volatility is summarized by the contribution of σ, the stochastic scale of the
model. We suggest therefore to correct the deterministic simulation conducted for the periods
beyond the order of the stochastic extended path approach by adding the contribution of the
stochastic scale provided by the perturbation approach.
For example, mixing a perturbation approach of order 2 and a stochastic extended path ap-
proach of order 1, the equations for node i would be:

(4a) st = Q(st−1, ut)

(4b) F (yt, xt, st, Et+1) = 0

(4c) G(yt, xt+1, xt, st) = 0

(4d) Et = H(yt + gσσ/2, xt, 0)

where the value of yt is corrected in the fourth equation.
When using this approach to simulate Burnside (1998) model, with a stochastic extended path
algorithm of order 2, the hybrid approach delivers a spectacular improvement in accuracy.
As before, we compute the difference between the stochastic expended path approximation of
order 2, the hybrid approach of order 2 and the closed-form solution, yt. We use 800 terms to
approximate the infinite summation and run simulations over 30000 periods. We report both
the maximum and minimum difference of the two approaches with the exact solution:

Stochastic Hybrid stochastic
extend path extend path

maximum difference 0.1607 0.0021
minimum difference 0.1513 0.0019

On the other hand, for the RBC model with irreversible investment, the hybrid approach makes
little difference. The maximum absolute difference between a second order stochastic extended
path or a second order hybrid approach is only 0.0033.
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7. Conclusion

This paper presents the stochastic extended path approach to simulate non linear models
while partially taking into account the systematic effect of future volatility on today decision.
The method is illustrated and its properties analyzed through two models. The first one,
by Burnside (2008), possess a closed form solution that permits an unambiguous measure of
accuracy. The second one, a RBC model with irreversible investment, illustrates the behavior
of the method when the model includes an occasionally binding constraints.
Those experiments show that is necessary to include a large number of periods for the compu-
tation of the conditional expectation at the heart of this type of models in order to adequately
take into account the effect of future volatility. This can be prohibitively expensive to compute
in practice.
In the last section of the paper, we present two extensions: the use of sparse tree and a hy-
brid method using a perturbation approach to deal with the effect of future volatility. Both
extensions improve the performance of the stochastic extended path approach.
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Figure 3. Paths of future innovations. Illustration with a scalar innovation,
u, S = 3, and p = 3 Hermite Gaussian quadrature nodes x1 = −

√
6

2 , x2 =

0, x3 =
√

6
2 , and the associated quadrature weights ω1 =

√
π

6 , ω2 = 2
√

π
3 ,

ω3 =
√

π
6 . By construction we have that ∑

p=3
i,j,k=1 ωiωjωk = π

3
2 . Up to the

constant of integration π
3
2 , the cumulated weight ωiωjωk has to be interpreted

as the probability of a particular sequence of future innovations. The central
path, ie the sequence {u2

t+1, u2
t+1, u2

t+3}, is the most likely, its probability is

ω2ω2ω2π−
3
2 = 8/27.
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Figure 4. Paths of future innovations in a sparse tree. Illustration with a
scalar innovation, u, S = 3, and p = 3

Appendix A. RBC models

A.1. Model #1. The dynamic of the model is characterized by the following equations:[
cθ

t (1− lt)1−θ
]−τ

θcθ−1
t (1− lt)1−θ

− βEt

[[
cθ

t+1(1− lt+1)
1−θ
]−τ

θcθ−1
t+1 (1− lt+1)

1−θ

×
{

α

[
α + (1− α)

(
kt+1

lt+1

)−ψ
] 1−ψ

ψ

At+1 + 1− δ

}]
= 0

(A.1a)

(A.1b)
1− θ

θ

ct

1− lt
− (1− α)At

[
α

(
kt

lt

)ψ

+ 1− α

] 1−ψ
ψ

= 0

(A.1c) ct + kt+1 − At

[
αkψ

t + (1− α)lψ
t

] 1
ψ − (1− δ)kt = 0

and the law of motion for efficiency.

A.2. Model #2. The dynamic of the model is characterized by the following equations:[
cθ

t (1− lt)1−θ
]−τ

θcθ−1
t (1− lt)1−θ − µt

− βEt

[[
cθ

t+1(1− lt+1)
1−θ
]−τ

θcθ−1
t+1 (1− lt+1)

1−θ

×
{

α

[
α + (1− α)

(
kt+1

lt+1

)−ψ
] 1−ψ

ψ

At+1 + 1− δ

}
− µt+1(1− δ)

]
= 0

(A.2a)



20 S. ADJEMIAN AND M. JUILLARD

(A.2b)
1− θ

θ

ct

1− lt
− (1− α)At

[
α

(
kt

lt

)ψ

+ 1− α

] 1−ψ
ψ

= 0

(A.2c) ct + kt+1 − At

[
αkψ

t + (1− α)lψ
t

] 1
ψ − (1− δ)kt = 0

(A.2d) µt (kt+1 − (1− δ)kt) = 0

and the law of motion for efficiency.

Appendix B. Steady state of the model

To obtain the analytical expression of the steady state, we define some the ratios of the en-
dogenous variables as functions of the deep parameters. From the Euler equation we have:

y?

k?
=

(
β−1 − 1 + δ

α

) 1
1−ψ

From the resource constraint:
c?

k?
=

y?

k?
− δ

From the definition of the production function, we define the steady state level of labor and
physical capital average productivity:

y?

l?
= A?

[
α + (1− α)

(
l?

k?

)ψ
]

y?

k?
= A?

[
α

(
k?

l?

)ψ

+ (1− α)

]
Substituting the expression of y?/k? in the last equation, we obtain the following intermediary
result:

l?

k?
=

( β−1 − 1 + δ

α

) ψ
1−ψ

A?−ψ − α

 1
ψ

(1− α)
− 1

ψ

From the consumption – leisure trade off condition, we have:

(?) c? = γ1(1− l?)

with

γ1 = θ
1− α

1− θ

[
y?/k?

l?/k?

]1−ψ

But we also have:
c?

l?
=

c?

k?
k?

l?
and by substitution:

(??) c? = γ2l?
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with

γ2 =

( β−1 − 1 + δ

α

) 1
1−ψ

− δ

( β−1 − 1 + δ

α

) ψ
1−ψ

A?−ψ − α

− 1
ψ

(1− α)
1
ψ

By Equating (?) and (??) we obtain the steady state level of labor:

l? =
(

1 +
γ2

γ1

)−1

The steady state levels of the remaining endogenous variables are easily deduced from this
expression and the steady state ratios previously defined. From these results we can compute
the steady state level of the share of physical capital revenues:

s (k?, l?) =
α

1
1−ψ A?ψ

(β−1 − 1 + δ)
ψ

1−ψ

which can be used for the calibration of the model. Note that 1/1−ψ is the elasticity of sub-
stitution between physical capital and labor. In the Cobb–Douglas case (ψ = 0), we have
s(k?, l?) = α.
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