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Abstract

Assessing long run endogenous risk in a DSGE implies to take seriously both
non-linearities and future stochastic shocks. Furthermore, non-binding con-
straints such as the zero lower bound for nominal interest rates (ZLB) make
it difficult to use traditional perturbation methods even of higher order. We
use instead a hybrid stochastic extended path approach. The extended path
approach uses an auxiliary perfect foresight model to compute the effect of
random shocks period by period. The stochastic extended path approach uses
quadrature and several auxiliary perfect foresight models to compute numer-
ically the conditional expectation in the nonlinear model for a few periods
forward. The hybrid stochastic extended path approach uses a perturbation
approach to take into account the long run effect of future random shocks
that is not taken into account by the successice quadratures. We apply this
approach to the model of Rudebusch and Swanson (2008). We find that the
ZLB affects the risk premium when the ZLB is binding, but not such much
outside of these episodes.

Introduction!

There is now an abundant literature on the macroeconomic determinants of
asset prices and of term premium in particular. In that context term premia
are compensation for consumption and inflation risks in the future.
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In a DSGE model, these risks unfold from the stochastic nature of the
environment and the shocks affecting consumption and real returns of various
class of assets. These risks affect agents’ current behavior and asset prices
because of the joint effect of nonlinearities and future uncertainty. They can’t
be addressed by (log-)linearizing the entire model because of the certainty
equivalence property of linear models, nor by considering a perfect foresight,
deterministic, version of that model.

If the model is small enough, it can be solved by iteration on the value
function or a similar method, but even small DSGE models have too many
state variables for this option to be practicable. Jermann (1998) log-linearizes
the real part of the model and applies exact log normal formulas to determine
asset prices and term premia. Rudebusch and Swanson (2008, 2012) use a
third order perturbation approach.

However, local approximation doesn’t permit to treat easily occasionally
binding constraint and this makes difficult to discuss the effect of the zero
lower bound for nominal interest rates on asset prices dynamics. In this paper,
we use a hybrid stochastic extended path method to address this issue.

We simulate the model in Rudebusch and Swanson (2008) while imposing
the ZLB. This is a standard DSGE model using Epstein-Zin preferences in or-
der to disentangle risk aversion and inter temporal substitution. The model
includes nominal rigidities in the form of Calvo pricing and is extended with
a long-term bond in the form of a console calibrated to mimic a 10-year gov-
ernment bond. The term premium tracks the difference between the yield of
this console and a risk free rate.

We find that, as expected, taking properly into account future uncertainty
has important implication for the term premium. Because the ZLB puts a floor
on the diminution of the yield, the presence of the ZLB diminishes the term
premium in comparison with an hypothetical world where nominal interest
rate could become negative.

In the first section, we present the main features of the Rudebusch and
Swanson (2008) model. The different components of the hybrid stochastic
extended path are detailed in section 2. Numerical results are discussed in
section 3. Directions for future work conclude the paper.

1 Rudebusch and Swanson (2008) model with Epstein-
Zin preferences

Rudebusch and Swanson (2008) model is a standard DSGE model with Epstein-
Zin preferences, augmented with prices of nominal bonds and term premium.

1.1 Households

Households maximize expected utility provided by consumption ¢; and, neg-
atively, by labor effort ¢;, in such a way that their current welfare, W; is given
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if u(ct, ¢¢) > 0 everywhere (Epstein and Zin, 1989).

The Epstein-Zin utility specification breaks the equivalence between the
inverse of the inter temporal elasticity of substitution and the coefficient of rel-
ative risk aversion that is unavoidable in the standard expected utility frame-
work.

Period utility is defined as:
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If ¥ > 1, as it will be the case in the paper, u is negative everywhere and we
will use equation (2) for the remaining of the paper.
The resource constraint faced by the households is:

piar + Prey = wily + dy + prag—q

where a; is the stock of a state contingent asset at the end of period ¢ with
price p;, the price of consumption is noted P; and w; is the nominal wage rate.

Households choose plans for a;, ¢; and ¢4, taking prices as given. The first
order conditions of this optimization problem are:
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In turn, the households stochastic discount factor at time ¢ for a (stochastic)
payoff at time t 4 1 is:
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1.2 Firms

There exist a continuum of monopolistically competitive firms producing in-
termediary goods indexed by i € [0,1]. These firms set prices and hires labor
in a competitive labor market.



The production function for firm i is:
. -1 .
ye(i) = Ak (i) (6)

where ¢ is the fixed, firm specific capital stock and A; is total factor produc-
tivity, common to all firms, and that follows:

log Ay = palog Ay +ef! )
where ¢/ is an ii.d. shock with mean zero and variance ¢7.

Firms set prices according to a Calvo lottery with probability 1 —¢. The
price chosen by the firms that have the opportunity of setting their price in
period t is denoted p;. There is no indexation and this price remains until the
firm gets the opportunity to re-optimize.

When choosing a price, firm i maximizes the value to shareholders (the
households) of the cash flow over the duration of that price:
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where the stochastic discount process between periods t and t + j, m;;y;j =

H{(:,l mt+k.
The final good sector is made of perfectly competitive firms that aggregate
the continuum of intermediate products into a single final good using a CES

technology:
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The demand curve for each intermediary firm is

ye(i) = (ptp(:)>6 Y; (10)

and the aggregate price, P, is given by:
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Solving the optimization problem for the firm gives the following optimal-
ity condition:
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where mc; indicates the marginal cost for firm i at period t:
mer(i) = 240 (13)
1y (i)



1.3 Aggregate supply and labor demand
We consider the following index of cross-sectional price dispersion:
! ©
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j=0

The aggregate quantity of labor demanded by firms is:

u:ﬁ%mw . (15)

In equilibrium, aggregate labor demanded by firms, L; must equal ¢;, labor
offered by the representative household.
Aggregate supply of final good, Yy, is such that:

Y, = ATAK L (16)

where K = k, the aggregate stock of capital.

1.4 Aggregate demand
Government consumption of final good follows an exogenous AR(1) process:

Gt =0cGr1+¢f (17)

where &0 is an i.i.d.shock with zero mean and variance Ué. The government
finances these expenditures by a lump-sum tax.
A fraction JK is set aside each period to maintain the capital stock. The

aggregate resource constraint is then:
Y, =C;+6K+G; , (18)

where C; = ¢; is the consumption of the representative household.

1.5 Monetary policy

The monetary authority follows a Taylor-type policy rule:
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In the above equation, 1/ is the steady-state real interest rate, Y, the steady-
state level of output, 77*, the inflation target and € and i.i.d shock to monetary
policy with mean zero and variance 0?. The variable 7; denotes a geometric
moving average of inflation:

T = 9pﬁt,1 + (1 — Qp)ﬁt (20)



1.6 Long-term bonds and term premium

We consider a default-free nominal console which pays a geometrically declin-
ing coupon in every period to perpetuity. It's price per one dollar of coupon
in period ¢, ;7(”), satisfies:
P =14 6By ap)Y) @)
b1
where J, is the rate of decay of the console’s coupon. &, is calibrated such that
the Macaulay duration of the console be equal to 10 years, so as to mimic the
ten-year Treasury note. Working with a console is more convenient from a
computational point of view than with a n-period bond, when 7 is larger than
a few periods.
This default-free bond is still risky because its price covaries with the
household’s marginal utility of consumption. The term premium is then de-
fined as the difference between the yield of a bond and the yield of a notional
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risk-free bond. The risk-neutral price of the console, p; ’, is:

Y =Ey Y e s (22)
j=0

with iy = ZL:O in, and the term premium tpt(") is defined as:
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2 Numerical approximation

The only way to study the quantitative implication of this type of models is
to resort to numerical simulations. Because of the occasionally binding nature
of the zero lower bond for nominal interest rates, it is not possible to apply
local approximation in the way done by Rudebusch and Swanson (2008). We
propose to use instead an hybrid stochastic extended path approach.

Three elements are at the center of this approach: 1) an algorithm for deter-
ministic models handles the nonlinearities with a high level of accuracy; 2) the
conditional expectation at the heart of the stochastic model is approximated
by a quadrature formula; 3) the risky steady state replaces the deterministic
steady state as terminal value for the perfect foresight model as way to take
into account level effects of future uncertainty. We review below the various
building blocks of the approach.

The general form of the stochastic model that we want to solve is

Etf (Yrr1, Yt yi-1,ut) =0 (24)



where y; is a vector of endogenous variables and u, a vector of random
shocks. We assume

IE(Mt) =0
E(uup) = 2y
E(uul) =0 t#7

2.1 The algorithm for solving deterministic models

Deterministic, perfect foresight models, can easily be solved by making a sim-
plifying assumption. In the type of models that we are considering, in absence
of exogenous shocks, the variables converge back to the deterministic steady
state asymptotically. We impose instead that they converge in finite time. If
the horizon is large enough, the error of approximation introduced by this as-
sumption is arbitrarily small, particularly at the beginning of the simulation.

With the assumption of return to the steady state at the end of the simu-
lation, computing the trajectory of the variables is equivalent to solve a two-
boundary value problem.

The model for period t can be written

fWer1,y0,yi—1,u) =0 . (25)

Models with lead and lags on more than one period can easily be brought into
that format with the addition of auxiliary variables?

Computing the trajectory of y. for periods T = 1,..., H can be achieved
by solving a large nonlinear problem with the equations of the model stacked
for each of the H periods of the simulation:

f(vo,y1,y2,u1) =0
=0

f(}/m/z,y:a, u) 6

f(nylryH,]/.HH,uT) =0

for yo and yp41 given, or, in more compact notation:
F(Y)=0 27)

/

where Y= [y, vy ... vy ]

Laffargue (1990) shows that perfect foresight models can be solved by
Newton-type methods, exploiting the particular structure of the Jacobian of
F() in equation (27).

In the Newton approach, the solution for vector Y is found iteratively. For
an initial guess Y(%), successive approximated solutions Y¥*1) are obtained

2In the stochastic case, it is necessary to define auxiliary variables so as not to break nonlinear
expressions and, so doing, ignore Jensen’s inequality.



by solving

where 9 is the Jacobian matrix of function F(), until ||[Y*+D) — y(®)|| <
ey and/or ||[F(Y®))|| < er. Note that the effect of the exogenous shocks
uy,...,ur is implicitly taken into account when evaluating F(Y(*).

The Jacobian matrix of F() has the following structure:
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With current computers, standard algorithms for solving sparse linear
problems, such as those developed by Davis (2006), and available in Matlab of
Octave, for example, can be used very efficiently in this framework.

2.2 Extended path algorithm

In order to simulate stochastic models, Fair and Taylor (1983) suggest the fol-

lowing approach: for each period in the stochastic simulation, draw a random

vector of stochastic shocks u;; run an auxiliary deterministic version of the

model, setting shocks in period 1 to u; and all future shocks to zero; use the

value of the endogenous variables in the first period of this auxiliary model as

the value of the endogenous variables in period ¢ of the stochastic simulation.
Here is a sketch of the algorithm:



Algorithm 1 Extended path algorithm

1. H < Choose the horizon of the perfect foresight models.

2. yg < Choose an initial condition for the state variables.

3. fort =1to T do

4. v < Draw independent uniform variates (1; x 1).

5. uy « P71y, where P71P = Q, the covariance matrix of shocks.

6. Y < Solve a perfect foresight model with terminal condition y;;y4+1 =
U

7. end for

In this approach, one approximates the conditional expectations by replac-
ing the shocks by 0, their expected value. This neglects Jensen inequality and
represents a stochastic simulation under a sort of certainty equivalence. Ob-
viously, this is completely inadequate to tackle the effect of the ZLB on long
run risks because the certainty equivalence always delivers a term premium
that is equal to zero.

2.3 Stochastic extended path

The term premium in the model is generated by the interaction between future
uncertainty and the nonlinearities of the model. It is therefore absolutely nec-
essary to have a better treatment of the conditional expectation that translates
the impact of future uncertainty on today’s decisions.

We propose to compute the conditional expectation in the first K periods
of the auxiliary deterministic model by quadrature methods and we will call
the number of periods in which a quadrature formula is used the order of
stochastic extended path.

There are many different quadrature methods, but all of them come down
to approximate the conditional expectation by a weighted sum of outcomes
of the model when it is evaluated for values of the shock in the next periods
taken on a certain grid. To keep using the efficient deterministic solver, we
replace again shocks by zero, but only after K + 1 periods. So, this approach
permits to take partly in consideration the joint effect of future uncertainty
and nonlinearities in the model.

Each node used in the integration formula is at the origin of one or more
trajectories that converge back to the steady state in period H of the auxiliary
perfect foresight model. This number of trajectories taken into consideration
depends upon the quadrature scheme used and increases in each period be-
tween 1 and K+ 1. We denote [y, ..., Jx+1, the number of different trajectories
existing in periods 1 to K+ 1. After period K + 1, the number of trajectories
remains constant and correspond to Jgi1 parallel perfect foresight models,
with shocks equal to zero but different initial values corresponding to the
Jx+1 different trajectories in period K + 1.

If one uses an integration formula with P nodes in each period, the original



model 24 is replaced by the extended perfect foresight model (EPF):

wif(yj—l,t—lryj,tryi\j,ﬂrl/ I/it) =0 fort=1,...,K andj =1,.. .,]t (29)
1

fWjt-1YjtYj41,0) =0 fort =K+1,...,Handj=1,...,Jxk+1 (30)

where [y =1and Jy = (k—1)Pfork=2,...,K+1.
The stochastic extended path algorithm can be schematically described as:

P

1

Algorithm 2 Stochastic extended path algorithm

1. K < Choose the number of periods where the conditional expectation is
computed by quadrature.
le; v, omega; ] Compute the nodes and weights of the integration formula.
H < Choose the horizon of the perfect foresight models.
Yo < Choose an initial condition for the state variables.
fort =1to T do
vt < Draw independent uniform variates (15 x 1).
u; < P~1o, where P~1P = Q, the covariance matrix of shocks.
Yt < Solve the expanded perfect foresight model with terminal condi-
tion yj i Hi1 = Y-
9. end for

PN DN

2.4 Numerical integration

When computing the expected value of a nonlinear function of a normal ran-
dom variable, the quadrature formula of choice is Gauss-Hermite integration.
However, this approach doesn’t scale well with the number of dimensions
of the integration problem and hits quickly the curse of dimensionality. It
remains the preferred approach for small problems.

When the number of shocks and/or the order of stochastic extended path
increases, we turn to unscented transformations (Julier, 2002).

2.4.1 Gaussian quadrature

When integrating normally distributed random variables, a natural choice

is Gauss-Hermite integration. Suppose that X is a Gaussian random vari-

able with mean zero and variance ¢2 > 0, and that we need to evaluate

E[¢(X)], where ¢ is a continuous function. By definitions of the expec-

tation and the Gaussian probability density function, we have E[¢p(X)] =
x2

(rx\}E [ @(x)e 2%dx. This integral can be approximated using the follow-

ing result (Judd, 1998):

= 2 n nly/n ¢ (g)
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for any ¢ € IR, where the last term on the right hand side is the approxima-
tion error, x; (i = 1,...,n) are the roots of an order n Hermite polynomial,
and the weights w; are positive. For a given order of approximation #, the
approximation error is proportional to the order 2n derivative of the function
to be integrated. This results tells us that is possible to find out a sequence
of weights w; such that the evaluation of the integral with the sum of the
right hand side is exact for any order 2n — 1 polynomial. Golub and Welsch
(1969) describe how to calculate the quadrature weights and nodes (wj, x;) by
computing the eigenvalues and eigenvectors of a symmetric tridiagonal ma-
trix. Obviously a change of variable is needed to evaluate E[¢(X)]. We define
z = */ov2, and consider the following approximation for the expectation:

E[p(X)] ~ jE éwiqo(z,-)

If X is a multivariate Gaussian random variable we use a Tensor product
approach. For instance if X is defined in R™, E[X] = 0, V[X] = X, and ¢ (x)
is a function from R™ to IR7, we use the following approximation:

Elyp(X)] = (Zn)_iz—% /m 1/’(7()8_%"/271"51,(

1 .2
I lp(Zil,Ziz,...,Z;’Z)

2
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M=
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with the change of variables z = (zl,zz, A Z’%x/ V2. The drawback
of this tensor product rule is that the number of function i evaluations is
exponential with respect to the dimension of X.

2.4.2 Unscented transformations

When the number of shocks increases, Gauss-Hermite formula and tensor
products is not practicable anymore. An alternative is to use monomial for-
mulas (see Stroud, 1971). Recently, the theory of unscented transformations
revisits this material Julier et al. (2000).

An attractive and economical approach to integrate in R™ is to use a for-
mula with 2m 41 nodes. In the model, the vector of exogenous random shocks
u; follows a multivariate Gaussian distribution with mean 0 and covariance
matrix £,. Then, the conditional expectation E;f(y(us+1), Yt, Y¢—1, 4t) can be
approximated by 212;"0 wif(y(ei), ye, Yi—1, ut).

Following Julier et al. (2000) and with P'P=3%,, thenodese;,i=0,...,2m
are computed as follows:

6020 (31)
eri_1 = vm-+ab; i=1,...,mey; = —vm-+ab; i=1,...,m (32)
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where « is an arbitrary parameter. The weights w; is:

«
= 33
wo =~ (33)
1
| = i=1,...,2 4
wl 2(m+06) 1 7 ,em (3 )
where 7" w; = 1. The unscented transformation let us recover the mean

and the covariance matrix exactly for any 3rd order polynomial function. The
arbitrary parameter & can be used to match another moment or characteristic
of the nonlinear distribution.

2.4.3 Stochastic extended path of higher order

We call stochastic order of order K, the procedure where one computes the
conditional expectations via quadrature methods during the K first periods.

If, in period 2, one wants to use again a quadrature to evaluate each node
used for computing the conditional expectation in period 1, the number of
nodes increases in a tree like manner and very quickly confronts again the
curse of dimension.

If we consider the different problem of integrating simultaneously over m
shocks and K periods, a minimal monomial approach would consider nodes
that are different from zero in only one dimension at the time. This suggest
to use again quadrature only for the node ¢j in the unscented transform used
in the first K periods, but to reverse immediately to the deterministic model
with zero shocks for all other nodes. This strategy is illustrated in Figure 2.4.3
that describes the arrangement of nodes for stochastic extended path of order
3 for a model with 2 shocks, using a 5 points unscented transformation.

12
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Figure 1: Paths of future innovations in a sparse tree. Illustration with 2
shocks, 5 nodes and order 3

This scheme corresponds to the following different trajectories:

Trajectories
Period 1 2 3 4 5 6 7 8 9 10 11 12 13
Y11
Yi2 Y22 Y32 Yi2 VY52
Y13 Y23 Y33 Y43 VY53 Ye3 Y73 Y83 Y93
Yi4 Y24 VY34 Yaa VYs4 Yesa Y74 Y84 Yo4 VYios Y114 Y124 Y134
Yis Y25 Y35 Yss5 Yss5 Yes5 Y75 Y85 Y95 Yios Yiis Y125 Vi35

O WON -

H+1 'y vy v vy vy ¥y vy ¥y ¥y ¥ 'y ¥y ¥

This very large simulation exercise serves only to compute y; ; that is used to
update the overall stochastic simulation for one period.

For those equations in periods 1 to K where a curbature formula is used to
approximate the conditional expectation, the Jacobian of Y2 f (yj+i 41, Yj, ¥jr—1, Uc)
is

| Aix Bie TZ@iCiyizn | - (35)
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Despite the fact that the conditional expectation is in front of the nonlinear
function, in the Jacobian matrix, the curbature formula concerns only the Ja-
cobian with respect to the forward looking variables.

2.5 Hybrid stochastic extended path

It would take a very high order of stochastic extended path to fully take into
account the effects of future volatility. Furthermore, the deterministic steady
state used as terminal value in the auxiliary deterministic, perfect foresight,
model isn’t a steady state anymore when one takes into account the effects of
future volatility.

On the other hand, the perturbation approach provides us with another ap-
proximation of the effects of future volatility. The idea behind hybrid stochastic
extended path is to combine the treatments of major nonlinearities in the model
with the stochastic extended path method with taking into accounts general
effects of future volatility with a perturbation approach.

Let’s introduce o, the stochastic scale of the model, such that

Upy1 = o€, (36)

where €; is a vector of m auxiliary random variables with zero mean and
covariance matrix X¢. It follows that &, = 02Z,.
Consider the vector of solution functions g() such that

Yr = g(yt—1,ut, (7) p

and the original model (24) is satisfied. Functions g() are unknown.
Plugging the postulated functions g() in (24), one obtains

EiF(yi—1,ut,€041,0) = Erf(g(g(ye—1,ut,0),0€141,0), (Y1, Ut,0),Yi—1,ut) =0
(37)
In the above expression, the only stochastic term from the point of view of the
conditional expectation is €;41.
The hybrid stochastic extend path approach considers an Taylor expansion in
the sole direction of o

lEtf(g(g(]/t—llMt,U),(TGtH,U)/g(yt—lfut,(f),yt—l,ut)
® 19'F .
= f(g(g(yt—lzut/ 0)/ 0/ 0)/8(]/1‘—1/ ut, 0)/ Yi—1, ut) + IEt Z ﬂﬁgl . (38)
i=1"

In the first K periods of the stochastic extended path approach, the quadrature
takes into account jointly the deterministic aspects and the effects of future
volatility. After the first K periods, the deterministic solution setting shocks
to zero corresponds to the first term on the right hand side of (38). Using a
perturbation in ¢ direction would help taking into account the effects of future
volatility after the first K periods.

14



In practice, considering a 2nd order perturbation, the terms in periods
K 41, entering into the quadrature formula for period K, would be corrected
in the following manner:

~ 1
Yi+K+1 = Yrak41 T 5802 (39)

where y; k1 is the value computed by the deterministic simulation approach
and g, is the second derivative of the solution function with respect to the
stochastic scale of the model.

3 The effect of the ZLB on the term premium

In order to assess the effects of the zero lower bound for nominal interest rates,
we run a stochastic simulation of the Rudebusch and Swanson (2008) model,
considering only shocks to total factor productivity, A;. In this baseline sim-
ulation we use hybrid stochastic extended path of order 5 (using quadrature
for the 5 first periods in the auxiliary model).

It happens that a succession of positive shocks depresses so much the in-
terest rate that the nominal interest rate, in absence of the zero lower bound
for nominal interest rate would become negative. The evolution of nominal
interest rate, with and without the ZLB is represented in Figure 3. Note that
this scenario is very different from what we observed during the recent crisis
that were caused, on the contrary, by demand and confidence shocks.

In Figure 3 we plot the term premium with and without the ZLB. As ex-
pected, as in Rudebusch and Swanson (2008) the ZLB puts a floor below the
nominal interest rate and the term premium with the ZLB is lower than with-
out during the episode during which the unconstrained nominal interest rate
would become negative.

Comparing the evolution of consumption (Figure 3) and the evolution of
the bond nominal yield (Figure 3), one observes that the ZLB has a relatively
stronger effect on yield rather than on consumption.

Several parameters need to be tuned when implementing hybrid stochastic
extended path. As a robustness check, we vary the order of hybrid stochastic
extended path between 1 and 15. In Figure 3, we plot the evolution of the
term premium, in absence of ZLB for order=1,2,3,4,5,10 and 15.

The difference is important between orders 1 and 4, but much less between
4 and 15. Depending whether one uses order 1 or order 4, the overall mag-
nitude of the term premium almost doubles. On the other hand, using more
than order 5, doesn’t seem to bring significant additional information.

4 Conclusion
We present a hybrid stochastic extended path method that lets us analyze

the effects of the ZLB on asset prices in a new-Keynesian model, a question
difficult to address with usual methods.

15
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Figure 2: Nominal interest rate, with and without the ZLB

16



30 T

30 40 50 60 70 80 90 100

Figure 3: Term premium, with and without the ZLB
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Figure 5: Bond yield in percentage, with and without the ZLB
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In our example, the term premium is maintained higher than otherwise by
the ZLB that limits the fluctuation of the interest rate.

The approach seems promising. It still needs to include other shocks in
addition to the technological shock, in order to address scenarios more similar
to the evolutions during the Great Recession. It is also necessary to get a better
sense of the accuracy obtained with this method.
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